DOI QR코드

DOI QR Code

Mineralogy and Geochemistry of Shale Deposits in the Lower Anambra Basin, Nigeria: Implication for Provenance, Tectonic Setting and Depositional Environment

  • 투고 : 2023.09.10
  • 심사 : 2023.11.27
  • 발행 : 2023.12.29

초록

Mineralogical and geochemical studies of shales within the Lower Anambra Basin was conducted to unravel the depositional environment, provenance, maturity, paleo-weathering conditions, and tectonic settings. Mineralogical studies conducted using X-ray diffraction analysis revealed that the samples were composed of kaolinite, montmorillonite, chlorite, and illite. KaolinIite is the dominant mineral, constituting approximately 41.5% of the bulk composition, whereas the non-clay minerals are quartz, ilmenite, and sillimanite. Geochemical analysis showed a predominance of SiO2, Al2O3, and Fe2O3 contents of the shale samples with mean values of 52.29%, 14.09%, and 6.15% for Imo Shale (IS); 52.31%, 16.70%, and 7.39% for Mamu Shale (MS); 43.21%, 21.33%, and 10.36% for Enugu Shale (ES); 53.35%, 15.64%, and 7.17% for Nkporo Shale (NS); and 51.24%, 17.25%, and 7.78% for Agwu Shale (AS). However, the shales were depleted in Na2O, MgO, K2O, MnO, TiO2, CaO, and P2O5. The trace element ratios of Ni/Co and Cu/Zn of the shale suggest an oxic depositional environment. The average SiO2 vs. Al2O3 ratio of the shales indicated textural maturity. Compared to the PAAS standard, the shales plot below the PAAS value of 0.85, suggesting a high degree of maturity and intensive chemical weathering, further confirmed on a CIA vs. PIA plot. On log (K2O/Na2O) against SiO2 and tectonic setting discriminant function diagrams, the shales plot mostly in the field of passive continental margin tectonic setting. The discriminant function diagrams as well as Al2O3/TiO2 ratio of the shales showed that they were derived from a mixed source (mafic and intermediate igneous rocks).

키워드

참고문헌

  1. Amajor, L.C. (1987) The Eze-Aku sandstone ridges (Turonian) of southeastern Nigeria. A re- interpretation of their Depositional origin. Nigerian Journal of mining and Geology, v.23, p.19-26.
  2. Ajayi, T.R., Isklander, F.Y., Asubiojo, O.I. and Klein, D.E, (1989) Geochemistry of upper creataceous clastic sediments of ifon area Southwestern Nigeria. Journal of Mining and Geology, v.25, p.11-24.
  3. Akpokodje, E.G., Etu-Eteotor, J.O. and Olorunfemi, B.N. (1991) The composition and physical properties of some ceramics and pottery clays of south Eastern Nigeria. Journal of Mining and Geology, v.27, p.9-15.
  4. Akaegbobi, M.I. and Schmitt, M. (1998) Organic Facies, Hydrocarbon Source Potentials and Reconstruction of the Depositional Paleoenvironment of the Campano-Maastrichtian Nkporo Shale in the Cretaceous Anambra Basin, Nigeria. Nigerian Association of Petroleum Explorationists Bulletin, v.13, p.1-19.
  5. Ahlberg, A., Olsson, I. and Simkevicius, P. (2003) Triassic-Jurassic weathering and clay mineral dispersal in basement areas and sedimentary basins of southern Sweden. Sedimentary Geology, v.161, p.15-29. doi: 10.1016/S0037-0738(02)00381-0
  6. Akaegbobi, M.I. (2005) Sequence Stratigraphy of Anambra Basin. Journal of African Earth Sciences, v.42, p.394-406.
  7. Armstrong-Altrin, J.S. (2015) Evaluation of Two Multi-Dimensional Discrimination Diagrams from the Beach and Deep-Sea Sediments from the Gulf of Mexico and Their Application to Precambrian Clastic Sedimentary Rocks. International Geological Review, v.57, p.1446-1461. doi: 10.1080/00206814.2014.936055
  8. Akkoca, B.D., Eris, K.K., Cagatay, M.N. and Biltekin, D. (2019) The mineralogical and geochemical composition of Holocene sediments from Lake Hazar, Elazig, Eastern Turkey: Implications for weathering, paleoclimate, redox conditions, provenance, and tectonic setting. Turkish Journal of Earth Sciences, v.28, p.760-785. doi: 10.3906/yer-1812-8
  9. Al-Juboury, A.I., Qader, F.M., Howard, J., Vincent, S.J., Al-HadidyA, T.B., Kaye, M.N. and Vautravers, B. (2021) Organic and inorganic geochemical and mineralogical assessments of the Silurian Akkas Formation, Western Iraq. Journal of Petroleum Geology, v.44(1), p.69-96. doi: 10.1111/jpg.12779
  10. Adamu, L.M., Obaje, N.G., Ayuba, R., Musa, T.K., Dare, A.A., Nsikan, J.E. and Umaru, A.O. (2022) Litho-Bio Facies Analysis and Systematic Paleontology of Sediments in Amansiodo-1 Well, Anambra Basin, Southeastern Nigeria. Earth Sciences, v.11(3), p.96-108. doi: 10.11648/j.earth.20221103.16
  11. Bhatia, M.R. (1983) Plate tectonics and geochemical composition of sandstones. Journal of Geology, v.91, p.611-627. doi: 10.1086/628815
  12. Bhatia, M.R. and Crook, K. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, v.92, p.181-193. doi: 10.1007/BF00375292
  13. Benkhelil, J. (1989) The origin and evolution of the Cretaceous Benue Trough (Nigeria). Journal of African Earth Sciences, v.8, p.251-282. doi: 10.1016/S0899-5362(89)80028-4
  14. Bolarinwa, A.T., Sunday, O.F. and Idakwo, O. (2022) Geochemical studies of shales from the Asu River Group, Lower Benue Trough: Implications for provenance and paleo-environment reconstruction. Solid Earth Sciences, v.7(1), p.5-18. doi: 10.1016/j.sesci.2021.12.002.
  15. Cullers, R.L. (1994) The controls on major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimicia Et Cosmochimicia Acta, v.58, p.4955-4972. doi: 10.1016/0016-7037(94)90224-0
  16. Cox, R., Lowe, D.R. and Cullers, R. (1995) A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sediment cover. Journal of Sedimentary Research, 1, p.1-12.
  17. Cullers, R.L. and Podkovyrov, V.M. (2000) Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenanace, and recycling". Precambrian Research, v.104, p.77-93. doi: 10.1016/S0301-9268(00)00090-5
  18. Dypvik, H. (1984) Geochemical Compositions and Depositional Conditions of Upper Jurassic and Lower Cretaceous Yorkshire Clays, England. Geological Magazine, v.121, p.489-504. doi: 10.1017/S0016756800030028
  19. Deconinck, J.F., Amedro, F., Baudin, F., Godet, A., Pellenard, P., Robaszynski, F. and Zimmerlin, I. (2005) Late Cretaceous palaeoenvironments expressed by the clay mineralogy of Cenomanian - Campanian chalks from the east of the Paris Basin. Cretaceous Research, v.26, p.171-179. doi: 10.1016/j.cretres.2004.10.002
  20. Dera, G., Pellenard, P., Neige, P., Deconinck, J.-F., Puceat, E. and Dommergues, J.L. (2009) Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeography, Palaeoclimatology, Palaeoecology, v.271(1), p.39-51. doi: 10.1016/j.palaeo.2008.09.010
  21. Dey, S., Rai, A.K. and Chaki, A. (2009) Palaeoweathering, composition and tectonics of provenance of the Proterozoic intracratonic Kaladgi-Badami basin, Karnataka, southern India: evidence from sandstone petrography and geochemistry. Journal of South Asian Earth Science, v.34(6), p.703-715. doi: 10.1016/j.jseaes.2008.10.003
  22. Etemad-Saeed, N., Hosseini-Barzi, M. and Armstrong-Altrin, J.S. (2011) Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-badam block. Central Iran" Journal of African Earth Sciences, v.61, p.142-159. doi: 10.1016/j.jafrearsci.2011.06.003
  23. Ejeh, O.I., Akpoborie, I.A. and Etobro, A.A. (2015) Heavy Minerals and Geochemical Characteristics of Sandstones as Indices of Provenance and Source Area Tectonics of the Ogwashi-Asaba Formation, Niger Delta Basin. Open Journal of Geology, v.5, p.562-576. doi: 10.4236/ojg.2015.58051
  24. Ejeh, O.I. (2021) Geochemistry of rocks (Late Cretaceous) in the Anambra Basin, SE Nigeria: insights into provenance, tectonic setting, and other palaeo-conditions, Heliyon, pp.1-14. doi: 10.1016/j.heliyon.2021.e08110
  25. Feng, R. and Kerrich, R. (1990) Geochemistry of Fine-Grained Clastic Sediments in the Archean Abitibi Greenstones Belt, Canada: Implications for Provenance and Tectonic Setting. Geochimica et Cosmochimica Acta, v.54, p.1061-1081. doi: 10.1016/0016-7037(90)90439-R
  26. Fedo, C.M., Nesbitt, H.W. and Young, G.M. (1995) Unraveling the effects of K metasomatism in sedimentary rocks and paleosols with implications for paleo-weathering conditions and provenance. Geology, v.23, p.921-924. doi: 10.1130/0091-7613(1995)023%3C0921:UTEOPM%3E2.3.CO;2
  27. Fagbamigbe, O.O. (2013) Geochemistry of the Cretaceous Shale unit along Auchi-Igarra road in Anambra Basin, Nigeria, Department of Geology, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria, p.1-53.
  28. Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. (1984) The north American shale composite. Its compilation, major and trace elements characteristics. Geochim. Cosmochim. Acta, v.48, p.2469-2482. doi: 10.1016/0016-7037(84)90298-9
  29. Girty, G.H., Ridge, D.L., Knaack, C., Johnson, D. and Al-Riyami, R.K. (1996) Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada. California Journal of Sedimentary Research, v.66, p.107-118. doi: 10.1306/D42682CA-2B26-11D7-8648000102C1865D
  30. Gabriel, N., Armel Zacharie, E.B., John, E.T., David, D.Z., Hadjidjatou, B.D. and Lionel, T.N. (2019) Geochemistry of Cretaceous fine-grained siliciclastic rocks from Upper Mundeck and Logbadjeck Formations, Douala sub-basin, SW Cameroon: Implications for weathering intensity, provenance, paleoclimate, redox condition, and tectonic setting. Journal of African Earth Sciences, v.152, p.215-236. doi: 10.1016/j.jafrearsci.2019.02.021
  31. Harnois, L. (1988) The Chemical Index of Weathering: a new chemical index of weathering. Sedimentary Geology, v.55, p.319-322. doi: 10.1016/0037-0738(88)90137-6
  32. Herron, M.M. (1988) Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, v.58, p.820-829. doi: 10.1306/212F8E77-2B24-11D7-8648000102C1865D
  33. Hernandez-Hinojosa, V., Montiel-Garcia, P.C., Armstrong-Altrin, J.S., Nagarajan, R. and Kasper-Zubillaga, J.J. (2018) Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico. Carpathian Journal of Earth and Environmental Sciences, v.13, p.161-174. https://doi.org/10.26471/cjees/2018/013/015
  34. Ikhanei, P.R., Christy, O.A., Olayiwola, O.O. and Fakolade, O.R. (2022) Chemostratigraphic Architecture of Sandstone Facies Exposed Along Auchi-Ighara Road, Mid-Western Nigeria, Geoscience Engineering, p.33-45. doi: 10.35180/gse-2022-0067
  35. Johnsson, M.J. (1993) The system controlling the composition of clastic sediments. Geological Society of America (Special Paper) 284, p.1-19. doi: 10.1130/SPE284-p1
  36. Jones, B. and Manning, D.A. (1994) Comparison of geological indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, v.111, p.111-129. doi: 10.1016/0009-2541(94)90085-X
  37. Jahn, B.M. and Condie, K.C. (1995) Evolution of the Kaapvaal Craton as viewed from geochemical and Sm-Nd isotopic analyses of intracratonic pelites. Geochimica et Cosmochirnica Acta, v.59, p.2239-2258. doi: 10.1016/0016-7037(95)00103-7
  38. Kalsbeek, F. and Frei, R. (2010) Geochemistry of Precambrian sedimentary rocks used to solve stratigraphical problems: an example from the Neoproterozoic Volta basin, Ghana. Precambrian Research, v.176, p.66-75. doi: 10.1016/j.precamres.2009.10.004
  39. Krzeszowska, E. (2019) Geochemistry of the Lublin formation from the Lublin coal basin: Implications for weathering intensity, palaeo-climate, and provenance. International Journal of Coal Geology, v.216, p.1-12. doi: 10.1016/j.coal.2019.103306
  40. Levinson, A.A. (1974) Introduction to Exploration Geochemistry, Applied Publishing, Illinois.
  41. Lindsey, D.A. (1999) An evaluation of alternative chemical classifications of sandstones. United States Geological Survey. Open File Report 23p. doi: 10.3133/ofr99346
  42. Long, X., Yuan, C., Sun, M., Xiao, W., Wang, Y., Cai, K. and Jiang, Y. (2012) Geochemistry and Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai, Central Asia: evidence for a northward derived mafic source and insight into Nd model ages in accretionary orogen. Gondwana Research, v.22, p.554-566. doi: 10.1016/j.gr.2011.04.009
  43. Murat, R.C. (1972) Stratigraphy and paleogeography of the Cretaceous and lower tertiary in southern Nigeria, in Dessauvagie, T.F.J., and Whiteman, A.J. (eds), African Geology, University of Ibadan, Ibadan, p.251-260.
  44. McLennan, S.M. and Taylor, S.R. (1980) Geochemical standards for sedimentary rocks: trace elements data for United States Geological Survey standards SCO-1, MAG-1 and SGR-1. Chemical Geology, v.29, p.333-343. doi: 10.1016/0009-2541(80)90029-7
  45. McLennan, S. (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Review of Mineral Geochemistry, v.21(1), p.169-200. doi: 10.1515/9781501509032-010
  46. McLennan, S.M., Taylor, S.R., McCulloch, M.T. and Maynard, J.B. (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochica Acta, v.54, p.2015-2050. doi: 10.1016/0016-7037(90)90269-Q
  47. McLennan, S.M. and Taylor, S.R. (1991) Sedimentary-Rocks and Crustal Evolution: Tectonic Setting and Secular Trends. Journal of Geology, v.99, p.1-21. https://doi.org/10.1086/629470
  48. McLennan, S.M., Hemming, S., McDaniel, D.K. and Hanson, G.N. (1993) Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson, M.J., Basu, A. Eds. , Processes Z. Controlling the Composition of Clastic Sediments. Geological Society of America, Boulder, CO, p.21-40, Special Paper 284. doi: 10.1130/SPE284-p21
  49. Mishra, M. and Sen, S. (2010) Geological signatures of Mesoproterozoic siliciclastic rocks of the Kaimur Group of the Vindhyan Supergroup, Central India. China Journal of Geochemistry, v.20, p.21-32. doi: 10.1007/s11631-010-0021-1
  50. Moosavirad, S.M., Janardhana, M.R., Sethumadhav, M.S., Moghadam, M.R. and Shankara, M. (2011) Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, source weathering and tectonic setting. Chemie Der Erde - Geochemistry, v.71(3), p.279-288. doi: 10.1016/j.chemer.2010.10.001
  51. Musa, A.L., Rufai, A., Umaru, A.O., Fatima, A.N., Eneye, A.A. and Serah, H.J. (2022) Geochemistry and paleocurrent studies of sandstone facies of the Albian Bima Formation in Kaltungo Inlier, Gongola Sub-Basin, Nigeria: implications for provenance, tectonic, World Scientific News, v.169, p.97-120.
  52. Nwachukwu, S.O. (1972) The tectonic evolution of the southern portion of the Benue Trough. Geological Magazines, v.109, p.411-419. doi: 10.1017/S0016756800039790
  53. Nesbitt, H.W. and Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.299, p.715-717. doi: 10.1038/299715a0
  54. Nesbitt, H.W. and Young, G.M. (1984) Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, v.48, p.1523-1534. http://dx.doi.org/10.1016/0016-7037(84)90408-3
  55. Nesbitt, H.W. and Young, G.M. (1989) Formation and diagenesis of weathering profiles. Journal of Geology, v.97, p.129-147. https://doi.org/10.1086/629290
  56. Nwajide, C.S. and Reijers, T.J. (1996) Geology of the Southern Anambra Basin. In: Reijers, T.J.A., Ed., Selected Chapters on Geology, Warri, Shell Petroleum Development Company, p.133-148.
  57. Nesbitt, H.W., Fedo, C.M. and Young, G.M. (1997) Quartz and feldspar stability, steady and non-steady state weathering, and petrogenesis of siliciclastic sands and muds. Journal of Geology, v.105, p.173-191. doi: 10.1086/515908
  58. Nagarajan, R., Madhavaraju, J., Armstrong-Altrin, J.S. and Nagendra, R. (2007) Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India. Journal of Geosciences, v.15, p.9-25. doi: 10.1007/s12303-011-0005-0
  59. Obaje, N.G., Ulu, O.K. and Petters, S.W. (1999) Biostratigraphy and Geochemical controls of Hydrocarbon Prospects in the Benue Trough and Anambra Basin, Nigeria. NAPE Bulletin, v.14(1), p.15-18.
  60. Obaje, N.G., Wehner, H. and Hamza, H. (2004) New Geochemical Data from the Nigerian Sector of the Chad Basin: Implications on Hydrocarbon Prospectively. Journal of African Earth Sciences, v.38, p.477-487. doi: 10.1016/j.jafrearsci.2004.03.003
  61. Ojo, O.J., Ajibola, U.K. and Akande, S.O. (2009) Depositional environments, organic richness and petroleum generating potential of the Campanian-Maastrichtian Enugu Formation, Anambra Basin, Nigeria. Pacific Journal Science and Technology, v.10(1), p.614-627.
  62. Okunlola, O.A. and Idowu, O. (2012) The geochemistry of claystone deposits from the Maastritchian Pattif Formation, southern Bida Basin, Nigeria. Earth Science Research Journal, v.16, p.57-67.
  63. Odewumi, S.C. (2013) Mineralogy and Geochemistry of Geophagic Clays from Share Area, Northern Bida Sedimentary Basin, Nigeria. African Journal of Natural Sciences, v.16, p.87-98. https://doi.org/10.4172/2329-6755.1000108
  64. Obaje, N.G., Adamu, L.M., Umar, U.M., Umaru, A.O. and Okafor, P. (2020) Geochemical and geostatistical assessment of Cretaceous coals and shales in some Nigerian sedimentary basins for their hydrocarbon proness and maturity levels. African Journal of Engineering and Environment Research, v.1(2), p.37-51.
  65. Pettijohn, F.J. (1957) Sedimentary rocks, 2nd edition. Harper and Row, New York.
  66. Petters, S.W. and Ekweozor, C.M. (1982) Petroleum Geology of the Benue Trough and Southeastern Chad Basin, Nigeria. American Association of Petroleum Geologists Bulletin, v.66, p.1141-1149. doi: 10.1306/03B5A65B-16D1-11D7-8645000102C1865D
  67. Paikaray, S., Banerjee, S. and Mukherji, S. (2008) Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Sciences, v.32(1), p.34-48. doi: 10.1016/j.jseaes.2007.10.002
  68. Reyment, R.A. (1965) Aspects of the Geology of Nigeria. Ibadan University Press, Ibadan, 145p
  69. Roser, B.P. and Korsch, R.J. (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, v.94, p.635-650. doi: 10.1086/629071
  70. Roser, B.P. and Korsch, R.J. (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, v.67, p.119-139. doi: 10.1016/0009-2541(88)90010-1
  71. Reijers, T.J. (1996) Selected Chapters on Geology: Sedimentary Geology and Sequence Stratigraphy in Nigeria, Three Case Studies and a Field Guide. Shell Petroleum Development Corporation. Corporate Reprographic Services, Warri.
  72. Ruffell, A.H., McKinley, J.M. and Worden, R.H. (2002) Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe. Philosophical Transactions of the Royal Society, v.360, p.675-693. doi: 10.1098/rsta.2001.0961
  73. Roy, P.D. and Smykatz-Kloss, W. (2007) REE geochemistry of the recent playa sediments from the Thar Desert, India: an implication to playa sediment provenance. Chemie der Erde - Geochemistry, v.67, p.55-68. doi: 10.1016/j.chemer.2005.01.006
  74. Suttner, L.J. and Dutta, P.K. (1986) Alluvial sandstone composition and paleoclimate, framework mineralogy. Journal of Sedimentary Petrology, v.56(3), p.329-345. doi: 10.1306/212F8909-2B24-11D7-8648000102C1865D
  75. Sugitani, K., Horiuchi, Y., Adachi, M. and Sugisaki, R. (1996) Anomalously low Al2O3/TiO2 values for Archean cherts from the Pilbara Block, Western Australia: possible evidence for extensive chemical weathering on the early earth. Precambrian Research, v.80, p.49-76. doi: 10.1016/S0301-9268(96)00005-8
  76. Shettima, B., Adams, F.D. and Joseph, M.V. (2017) Mineralogy and geochemistry of mudstones of the Bama Ridge (Upper Chad Formation) Bornu Basin, North-Eastern Nigeria. International Research Journal of Advanced Engineering and Science, v.2, 1, p.153-159.
  77. Shettima, B., Bukar, M., Kuku, A., Kamale, H.I. and Umaru, A.O. (2020a) Tidal Channel Depositional Complex of the Cretaceous Yolde Formation of the Gongola Sub-Basin, Northern Benue Trough NE Nigeria. Journal of Geography, Environment and Earth Science International, v.24, p.35-44. doi: 10.9734/jgeesi/2020/v24i630234
  78. Shettima, B., Bukar, M., Kamale, H.I., Yerima, I.A. and Umaru, A.O. (2020b) Regressive Shoreface Depositional System of the Cretaceous Yolde Formation of the Gongola Sub-Basin Northern Benue trough NE Nigeria. Journal of Geography, Environment and Earth Science International, v.24, p.1-10. doi: 10.9734/jgeesi/2020/v24i530222
  79. Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust; Its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks. Blackwell, Oxford. 312p.
  80. Turekian, K.K. and Wedepohl, K.H. (1961) Distribution of the elements in some major units of the earth crust. Geological Society of American Bulletin, v.72, p.175-191. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
  81. Tawfik, H.A., Ghandour, I.M., Maejima, W., Armstrong-Altrin, J.S. and Abdel-Hameed, A.M. (2015) Petrography and geo chemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: Implications for provenance, tectonic setting and source weathering. Geological Magazine, v.154, p.1-23.
  82. Toyin, A. and Adekeye, O.A. (2018) Assessment of Chemical and Mineralogical composition of Tertiary Shales from the Nigerian sector of Iullemmeden Basin: Implication for Paleoclimate and Provenance. Journal of African Earth Sciences. doi: 10.1016/j.jafrearsci.2018.09
  83. Vine, J.D. and Tourtelot, E.B. (1970) Geochemistry of black shale deposits-a summary report. Economic Geology, v.65, p.253-272. doi: 10.2113/gsecongeo.65.3.253
  84. Verma, S.P. and Armstrong-Altrin, J.S. (2013) New Multi-Dimensional Diagrams for Tectonic Discrimination of Siliciclastic Sediments and Their Application to Precambrian Basins. Chemical Geology, v.355, p.117-133. doi: 10.1016/j.chemgeo.2013.07.014
  85. Whiteman, A. (1982) Nigeria: its Petroleum Geology, Resources, and Potentials. v.1. Graham and Trotman, p.394.
  86. Wronkiewicz, D.J. and Condie, K.C. (1990) Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: cratonic evolution during the early Proterozoic. Geochimica et Cosmochimica Acta, v.54, p.343-354. doi: 10.1016/0016-7037(90)90323-D
  87. Wang, Z.W., Wang, J., Fu, X.G., Feng, X., Wang, D., Song, C.Y., Chen, W.B. and Zeng, S.Q. (2017) Petrography and geochemistry of Upper Triassic Sandstones from the Tumengela Formation in the Woruo Mountain area, North Qiangtang Basin, Tibet: implications for provenance, Source Area Weathering and Tectonic Setting. Island Arc 26. doi: 10.1111/iar.12191
  88. Yamamoto, K., Sugisaki, R. and Arai, F. (1986) Chemical aspects of alteration of acidic tuffs and their application to siliceous deposits. Chemical Geology, v.55, p.61-76. doi: 10.1016/0009-2541(86)90128-2
  89. Waziri, M.I., Adamu, L.M., Yunusa, L.J., Adoze, U.J. and Umaru, A.O. (2020) Lithological Mapping and characterization of the Yolde Formation around Gombe Inlier, Gongola Sub-Basin, Northeastern Nigeria: Implication on Facies association and Paleoenvironmental Reconstruction. FUTY Journal of the Environment, v.14(3), p.55-72.