DOI QR코드

DOI QR Code

Mineralogical and Geochemical Studies on the Daum Vent Field, Central Indian Ridge

인도양 중앙해령 Daum 열수분출대의 광물·지구화학적 연구

  • Ryoung Gyun Kim (Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology) ;
  • Sun Ki Choi (Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology) ;
  • Jonguk Kim (Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology) ;
  • Sang Joon Pak (Critical Minerals Research Center, Korea Institute Geoscience and Mineral Resources) ;
  • Wonnyon Kim (Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology)
  • 김령균 (한국해양과학기술원 대양자원연구부) ;
  • 최선기 (한국해양과학기술원 대양자원연구부) ;
  • 김종욱 (한국해양과학기술원 대양자원연구부) ;
  • 박상준 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터) ;
  • 김원년 (한국해양과학기술원 대양자원연구부)
  • Received : 2023.09.21
  • Accepted : 2023.11.10
  • Published : 2023.12.29

Abstract

The Daum Vent Field (DVF) was newly discovered in the Central Indian Ridge during the hydrothermal expedition by the Korea Institute of Ocean Science & Technology (KIOST) in 2021. In this paper, we describe the detailed mineralogy and geochemistry of hydrothermal chimney and mound to understand the nature of hydrothermal mineralization in the DVF. The mineral assemblages (pyrite±sphalerite±chalcopyrite) of dominant sulfides, FeS contents (mostly <20 mole %) of sphalerite, and (Cu+Zn)/Fe values (0.001-0.22) of bulk compositions indicate that the DVF has an strong affinity with basaltic-hosted seafloor massive sulfide (SMS) deposit along the oceanic ridge. Combined with the predominance of colloform and/or dendritic-textured pyrite and relatively Fe-poor sphalerite in chimneys, the fluid-temperature dependency of trace element systematics (Co, Mn, and Tl) between chimney and mound indicates that the formation of mound was controlled by relatively reducing and high-temperature fluids compared to chimney. The δ34S values (+8.31 to +10.52‰) of pyrite reflect that sulfur and metals were mainly leached from the associated basement rocks (50.6-61.3%) with a contribution from reduced seawater sulfur (38.7-49.4%). This suggests that the fluid-rock interaction, with little effect of magmatic volatile influx, is an important metal source for the sulfide mineralization in the DVF.

다음 열수분출대(Daum Vent Field, DVF)는 한국해양과학기술원 주도로 수행된 2021년도 인도양 중앙해령 대양탐사에서 새롭게 발견되었다. 본 논문에서는 DVF의 광상 유형 분류, 광화 조건 비교 및 주요 금속 공급원 규명을 위해 획득한 침니와 마운드 시료를 대상으로 현미경 관찰, 전암분석, 전자현미분석 및 in situ 황 동위원소 분석을 실시하였다. 유형별 중앙해령 시스템과의 비교연구 결과 DVF에서 확인되는 주요 광물조합(황철석±섬아연석±황동석), 섬아연석 FeS 함량(대부분 <20 mole %) 및 (Cu+Zn)/Fe 전암 구성비(0.001-0.22)의 상관성은 DVF가 현무암 기반의 중앙해령 해저열수광상임을 시사한다. 침니에서 확인되는 교질상/수지상 황철석의 우세한 산출, 상대적으로 철이 결핍된 섬아연석 및 Co 결핍과 Mn, Tl 부화로 특징되는 온도 의존성 금속의 거동 특성은 침니에 비해 마운드의 형성이 상대적으로 고온의 환원성 유체에 의해 규제되었음을 나타낸다. In situ 황 동위원소 분석에서 확인되는 황철석의 δ34S 값 범위(+8.31에서 +10.52‰)는 약 38.7-49.4%의 해수기원 황과 50.6-61.3%의 화성기원 황의 복합적인 기여를 반영하며, 이는 DVF 형성에 있어 주요 금속 공급원이 마그마 영향을 거의 받지 않은 물-암석 상호작용임을 지시한다.

Keywords

Acknowledgement

이 논문은 2023년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원(연구개발과제번호 20210634, 인도양 중앙해령 해저열수광상 개발유망광구 선정) 및 한국해양과학기술원기본사업(과제번호 PEA 0124, 인도양 중앙해령 무기가스/열수분출물 특성 연구 및 자원화 가능성 평가)의 지원을 받아 수행되었습니다. 본 논문의 발전을 위해 유익한 고견을 주신 박정우 교수님과 익명의 심사위원분께 감사드립니다.

References

  1. Anderson, D.L. (1989) Composition of the Earth. Science, v.243, p.367-370. doi: 10.1126/science.243.4889.367
  2. Arnold, M. and Sheppard, S.M.F. (1981) East Pacific Rise at latitude 21°N: isotopic composition and origin of the hydrothermal sulphur. Earth Planet. Sci. Lett., v.56, p.148-156. doi: 10.1016/0012-821X(81)90122-9
  3. Berkenbosch, H.A., de Ronde C.E.J., Gemmell, J.B., McNeill, A.W. and Goemann, K. (2012) Mineralogy and formation of black smoker chimneys from Brothers submarine Volcano, Kermadec arc. Econ. Geol., v.107, p.1613-1633. doi: 10.2113/econgeo.107.8.1613
  4. Choi, S.K., Pak, S.J., Kim, J., Park, J.W. and Son, S.K. (2021) Gold and tin mineralisation in the ultramafic-hosted Cheoeum vent field, Central Indian Ridge. Miner. Depos., v.56, p.885-906. doi: 10.1007/s00126-020-01012-5
  5. Choi, S.K. (2022) A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution. Econ. Environ. Geol., v.55(5), p.465-475. doi: 10.9719/EEG.2022.55.5.465
  6. Choi, S.K., Pak, S.J., Park, J.W., Kim, H.S., Kim, J. and Choi, S.H. (2023a) Trace-element distribution and ore-forming processes in Au-Ag-rich hydrothermal chimneys and mounds in the TA25 West vent field of the Tonga Arc. Miner. Depos., p.1-26. doi.org/10.1007/s00126-022-01136-w
  7. Choi, S.K., Pak, S.J., Kim, J., Shin, J.Y., Yang, S., Jang, H. and Son, S.K. (2023b) Mineralogy and trace element geochemistry of hydrothermal sulfides from the Ari vent field, Central Indian Ridge. Miner. Depos., p.1-22. doi: 10.1007/s00126-023-01191-x
  8. Escartin, J., Smith, D.K., Cann, J., Schouten, H., Langmuir, C.H. and Escrig, S. (2008) Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, v.455(7214), p.790-794. doi: 10.1038/nature07333
  9. Falkenberg, J.J., Keith, M., Haase, K.M., Bach, W., Klemd, R., Strauss, H., Yeo, I.A., Rubin, K.H., Storch, B. and Anderson, M.O. (2021) Effects of fluid boiling on Au and volatile element enrichment in submarine arc-related hydrothermal systems: Geochim. Cosmochim. Acta, v.307, p.105-132. doi: 10.1016/j.gca.2021.05.047
  10. Fouquet, Y., von Stackelberg, U., Charlou, J.L., Erzinger, J., Herzig, P.M., Muehe, R. and Wiedicke, M. (1993) Metallogenesis in back-arc environments; the Lau Basin example. Econ. Geol., v.88, p.2154-2181. doi: 10.2113/gsecongeo.88.8.2154
  11. Fouquet, Y., Cambon, P., Etoubleau, J., Charlou, J.L., Ondreas, H., Barriga, F.J.A.S., Cherkashov, G., Semkova, T., Poroshina, T., Bohn, M., Donval, J.P., Henry, K., Murphy, P. and Rouxel, O. (2010) Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. Diversity of hydrothermal systems on slow spreading ocean ridges. Geophys. Monogr. Ser., v.188, p.321-367. doi: 10.1029/2008GM000746
  12. Fu, J., Hu, Z., Zhang, W., Yang, L., Liu, Y., Li, M., Zong, K., Gao, S. and Hu, S. (2016) In situ sulfur isotopes (δ34S and δ33S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICPMS. Anal. Chim. Acta, v.911, p.14-26. doi: 10.1016/j.aca.2016.01.026
  13. Grant, H.L.J., Hannington, M.D., Petersen, S., Frische, M. and Fuchs, S.H. (2018) Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chem. Geol., v.498, p.45-71. doi: 10.1016/j.chemgeo.2018.08.019
  14. Halbach, P., Blum, N., Munch, U., Pluger, W., Garbe-Schonberg, D. and Zimmer, M. (1998) Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Miner. Depos., v.33, p.302-309. doi: 10.1007/s001260050149
  15. Hannington, M.D., De Ronde, C.E.J. and Petersen, S. (2005) 'SeaFloor Tectonics and Submarine Hydrothermal Systems', in One Hundredth Anniversary Volume. Society of Economic Geologists, p.111-141. doi: 10.5382/AV100.06
  16. Kawasumi, S. and Chiba, H. (2017) Redox state of seafloor hydrothermal fluids and its effect on sulfide mineralization. Chem. Geol., v.451, p.25-37. doi: 10.1016/j.chemgeo.2017.01.001
  17. Keith, M., Haase, K.M., Schwarz-Schampera, U., Klemd, R., Petersen, S. and Bach, W. (2014) Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology, v.42, p.699-702. doi: 10.1130/G35655.1
  18. Klein, F. and Le Roux, V. (2020) Quantifying the volume increase and chemical exchange during serpentinization. Geology, v.48, p.552-556. doi: 10.1130/G47289.1
  19. Kojima, S. and Sugaki, A. (1985) Phase relations in the Cu-Fe-Zn-S system between 500° and 300℃ under hydrothermal conditions. Econ. Geol., v.80, p.158-171. doi: 10.2113/gsecongeo.80.1.158
  20. Maslennikov, V.V, Maslennikova, S.P., Large, R.R. and Danyushevsky, L.V. (2009) Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ. Geol., v.104, p.1111-1141. doi: 10.2113/gsecongeo.104.8.1111
  21. Maslennikov, V.V., Maslennikova, S.P., Large, R.R., Danyushevsky, L.V., Herrington, R.J., Ayupova, N.R., Zaykov, V.V., Lein, A.Y., Tseluyko, A.S., Melekestseva, I.Y. and Tessalina, S.G. (2017) Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geol. Rev., v.85, p.64-106. doi: 10.1016/j.oregeorev.2016.09.012
  22. Melekestseva, I.Y., Maslennikov, V.V., Tret'yakov, G.A., Nimis, P., Beltenev, V.E., Rozhdestvenskaya, I.I., Maslennikova, S.P., Belogub, E.V., Danyushevsky, L., Large, R., Yuminov, A.M. and Sadykov, S.A. (2017) Gold and silver-rich massive sulfides from the Semenov-2 hydrothermal field, 13°31.13'N, Mid-Atlantic Ridge: A case of magmatic contribution? Econ. Geol., v.112, p.741-773. doi: 10.2113/econgeo.112.4.741
  23. Meng, X., Li, X., Chu, F., Zhu, J., Lei, J., Li, Z., Wang, H., Chen, L. and Zhu, Z. (2020) Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1-2°S). Ore Geol. Rev., v.116, p.103209. doi: 10.1016/j.oregeorev.2019.103209
  24. Metz, S. and Trefry, J.H. (2000) Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim. Cosmochim. Acta, v.64, p.2267-2279. doi: 10.1016/S0016-7037(00)00354-9
  25. Nakamura, K., Morishita, T., Bach, W., Klein, F., Hara, K., Okino, K., Takai, K. and Kumagai, H. (2009) Serpentinized troctolites exposed near the Kairei Hydrothermal Field, Central Indian Ridge: Insights into the origin of the Kairei hydrothermal fluid supporting a unique microbial ecosystem. Earth Planet. Sci. Lett., v.280, p.128-136. doi: 10.1016/j.epsl.2009.01.024
  26. Ohmoto, H. and Lasaga, A.C. (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim. Cosmochim. Acta, v.46, p.1727-1745. doi: 10.1016/0016-7037(82)90113-2
  27. Pak, S.J., Moon, J.W., Kim, J., Chandler, M.T., Kim, H.S., Son, J., Son, S.K., Choi, S.K. and Baker, E.T. (2017) Widespread tectonic extension at the Central Indian Ridge between 8°S and 18°S. Gondwana Res., v.45, p.163-179. doi: 10.1016/j.gr.2016.12.015
  28. Patten, C.G.C., Pitcairn, I.K., Teagle, D.A.H. and Harris, M. (2016) Mobility of Au and related elements during the hydrothermal alteration of the oceanic crust: implications for the sources of metals in VMS deposits. Miner. Depos., v.51(2), p.170-200. doi: 10.1007/s00126-015-0598-8
  29. Rees, C.E., Jenkins, W.J. and Monster, J. (1978) The sulphur isotopic composition of ocean water sulphate. Geochim. Cosmochim. Acta, v.42, p.377-381. doi: 10.1016/0016-7037(78)90268-5
  30. Sakai, H., Marais, D.J.D., Ueda, A. and Moore, J.G. (1984) Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim. Cosmochim. Acta, v.48, p.2433-2441. doi: 10.1016/0016-7037(84)90295-3
  31. Scott, S.D. (1983) Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineral. Mag., v.47, p.427-435. doi: 10.1180/minmag.1983.047.345.03
  32. Scott, S.D. and Barnes, H.L. (1971) Sphalerite geothermometry and geobarometry. Econ. Geol., v.66, p.653-669. doi: 10.2113/gsecongeo.66.4.653
  33. Stoffers, P., Worthington, T.J., Schwarz-Schampera, U., Hannington, M.D., Massoth, G.J., Hekinian, R., Schmidt, M., Lundsten, L.J., Evans, L.J., Vaiomo'unga, R. and Kerby, T. (2006) Submarine volcanoes and high-temperature hydrothermal venting on the Tonga arc, southwest Pacific. Geology, v.34, p.453-456. doi: 10.1130/G22227.1
  34. Tao, C., Seyfried, W.E., Lowell, R.P., Liu, Y., Liang, J., Guo, Z., Ding, K., Zhang, H., Liu, J., Qiu, L., Egorov, I., Liao, S., Zhao, M., Zhou, J., Deng, X., Li, H., Wang, H., Cai, W., Zhang, G., Zhou, H., Lin, J. and LI, W. (2020) Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nat. Commun., v.11, p.1300. doi: 10.1038/s41467-020-15062-w
  35. Tivey, M. (2007) Generation of Seafloor Hydrothermal Vent Fluids and Associated Mineral Deposits. Oceanography, v.20(1), p.50-65. doi: 10.5670/oceanog.2007.80
  36. Wang, Y., Han, X., Petersen, S., Jin, X., Qiu, Z. and Zhu, J. (2014) Mineralogy and geochemistry of hydrothermal precipitates from Kairei hydrothermal field, Central Indian Ridge. Mar. Geol., v.354, p.69-80. doi: 10.1016/j.margeo.2014.05.003
  37. Wohlgemuth-Ueberwasser, C.C., Viljoen, F., Petersen, S. and Vorster, C. (2015) Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochim. Cosmochim. Acta, v.159, p.16-41. doi: 10.1016/j.gca.2015.03.020
  38. Yeats, C.J., Parr, J.M., Binns, R.A., Gemmell, J.B. and Scott, S.D. (2014) The Susu Knolls hydrothermal field, Eastern Manus Basin, Papua New Guinea: An active submarine high-sulfidation copper-gold system. Econ. Geol., v.109, p.2207-2226. doi: 10.2113/econgeo.109.8.2207
  39. Zeng, Z., Ma, Y., Chen, S., Selby, D., Wang, X. and Yin, X. (2017) Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: Implications for ore genesis and fluid circulation. Ore Geol. Rev., v.87, p.155-171. doi: 10.1016/j.oregeorev.2016.10.014
  40. Zhao, Y., Tian, H., Li, J., Chen, S. and Zhao, J. (2022) Constraints on the genesis of the Laochang Pb-Zn ore, Gejiu district, Yunnan: Evidence from sulfide trace element and isotope geochemistry: Ore Geol. Rev., v.150, p. 105162. doi: 10.1016/j.oregeorev.2022.105162