DOI QR코드

DOI QR Code

Preparation and Functional Properties of Dendropanax morbiferus Kombucha

  • Jie Rong (Department of Food Science and Nutrition, Jeju National University) ;
  • Ki-Bae Hong (Department of Food Science and Nutrition, Jeju National University) ;
  • Yun Jae Cho (R&D Center, JEJUPANATEK Inc.) ;
  • Sung-Soo Park (Department of Food Science and Nutrition, Jeju National University)
  • Received : 2023.09.25
  • Accepted : 2023.11.10
  • Published : 2023.12.30

Abstract

This study aimed to prepare kombucha, a fermented tea beverage, containing Dendropanax morbiferus (DM) leaves and roots, and analyze its antioxidant and intracellular activities. We compared the pH change, total acidity, radical scavenging activity, and oxygen radical absorbance capacity (ORAC) of kombucha fermented with black tea alone and that with added DM leaves or roots during fermentation. Using RAW 264.7, we evaluated the effects of kombucha containing different DM parts on nitric oxide (NO) production and inflammation-related cytokine content in cells. Kombucha containing ethanol extracts of DM leaves (BTK-E-DML) and roots (BTK-E-DMR) showed higher radical scavenging activity and ORAC 3 d after fermentation than that prepared from black tea alone (BTK-Ori). In an in vitro experiment using RAW 264.7, samples were treated with 8 mg/mL kombucha considering cytotoxicity; the lipopolysaccharide (LPS)-induced NO content significantly reduced after BTK-E-DML and BTK-EDMR treatments compared with that after BTK-Ori treatment. Additionally, the levels of interleukin-6 and tumor necrosis factor-alpha, which were LPS-stimulated inflammatory cytokines, significantly decreased in cells treated with BTK-E-DML and BTK-E-DMR 15 d after fermentation compared with those treated with BTK-Ori. In conclusion, these results demonstrate that kombucha fermented with the leaves and roots of DM increases antioxidant activity and can significantly regulate inflammatory responses at the cellular level.

본 연구는 황칠나무(Dendropanax morbiferus, DM)의 잎과 뿌리 추출물을 함유한 발효음료인 콤부차를 제조하고, 소재의 항산화 및 세포내 활성을 분석하였다. 홍차만으로 발효한 콤부차와 발효 과정에서 DM 잎이나 뿌리 추출물을 첨가한 홍차를 사용하여 발효한 콤부차의 pH 변화, 전체 산도, 라디칼 소거능을 비교하였다. 또한 RAW 264.7 세포주를 활용하여 DM의 잎이나 뿌리 추출물을 함유한 콤부차가 세포 내 산화질소(NO) 생성 및 염증 관련 사이토카인 함량에 미치는 영향을 평가하였다. DM 잎(BTKE-DML)과 뿌리(BTK-E-DMR)의 에탄올 추출물을 함유한 콤부차는 홍차만으로 제조한 콤부차(BTK-Ori)보다 발효 시작 3일 후 더 높은 라디칼 소거능을 나타내었다. RAW264.7 세포주를 이용한 in vitro 실험에서 세포독성을 고려하여 샘플을 8 mg/mL 콤부차로 처리한 결과, 지질다당류(LPS)로 유발된 NO 함량이 BTK-Ori 처리와 비교하였을 때 BTK-E-DML 및 BTK-E-DMR 처리에서 유의하게 감소하였다. 또한 LPS에 의해 자극되는 염증성 사이토카인인 인터루킨-6와 종양괴사인자-알파의 수준은 발효 15일 후 BTK-E-DML과 BTK-E-DMR을 처리한 세포에서 대조군에 비해 유의하게 감소하였다. 종합하면, 이러한 결과들은 DM의 잎 및 뿌리와 함께 발효된 콤부차는 항산화 활성이 증가되고, 세포 수준에서 염증 반응을 유의하게 조절할 수 있음을 입증하였다.

Keywords

Acknowledgement

This work was carried out with the support of "Regional Special Industry Development (Project No. S32657422)" Ministry of SMEs and Startups, Republic of Korea.

References

  1. Cole, J.B., Florez, J.C., Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol., 16, 377-390 (2020). https://doi.org/10.1038/s41581-020-0278-5
  2. de Miranda, J.F., Ruiz, L.F., Silva, C.B., Uekane, T.M., Silva, K.A., Gonzalez, A.G.M., Fernandes, F.F., Lima, A.R., Kombucha: a review of substrates, regulations, composition, and biological properties. J. Food Sci., 87, 503-527 (2022). https://doi.org/10.1111/1750-3841.16029
  3. Chong, A.Q., Lau, S.W., Chin N.L., Talib, R.A., Basha, R.K., Fermented beverage benefits: a comprehensive review and comparison of kombucha and kefir microbiome. Microorganisms, 11, 1344 (2023).
  4. Antolak, H., Piechota, D., Kucharska, A., Kombucha tea-a double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants (Basel), 10, (2021).
  5. Choi, E.J., Kim, H., Hong, K.B., Suh, H.J., Ahn, Y., Hangover-relieving effect of ginseng berry kombucha fermented by Saccharomyces cerevisiae and Gluconobacter oxydans in ethanol-treated cells and mice model. Antioxidants (Basel), 12, 774 (2023).
  6. Kim, D., Wang, Y., Health-beneficial aroma and taste compounds in a newly developed kombucha using a huanglongbing-tolerant mandarin hybrid. J. Food Sci., 87, 2595-2615 (2022). https://doi.org/10.1111/1750-3841.16170
  7. Pavlovic, M.O., Stajic, M., Gasic, U., Duletic-Lausevic, S., Cilerdzic, J., The chemical profiling and assessment of anti-oxidative, antidiabetic and antineurodegenerative potential of kombucha fermented Camellia sinensis, Coffea arabica and Ganoderma lucidum extracts. Food Funct., 14, 262-276 (2023). https://doi.org/10.1039/D2FO02979K
  8. Phung, L.T., Kitwetcharoen, H., Chamnipa, N., Boonchot, N., Thanonkeo, S., Tippayawat, P., Klanrit, P., Yamada, M., Thanonkeo, P., Changes in the chemical compositions and biological properties of kombucha beverages made from black teas and pineapple peels and cores. Sci. Rep., 13, 7859 (2023).
  9. Balakrishnan, R., Cho, D.Y., Kim, I.S., Choi, D.K., Dendropanax morbiferus and other species from the genus dendropanax: therapeutic potential of its traditional uses, phytochemistry, and pharmacology. Antioxidants (Basel), 9, 962 (2020).
  10. Hoang, H.T., Park, J.S., Kim, S.H., Moon, J.Y., Lee, Y.C., Microwave-assisted Dendropanax morbifera extract for cosmetic applications. Antioxidants (Basel), 11, 998 (2022).
  11. Sun, S., Li, T., Jin, L., Piao, Z.H., Liu, B., Ryu, Y., Choi, S.Y., Kim, G.R., Jeong, J.E., Wi, A.J., Lee, S.J., Kee, H.J., Jeong, M.H., Dendropanax morbifera prevents cardiomyocyte hypertrophy by inhibiting the Sp1/GATA4 pathway. Am. J. Chin. Med., 46, 1021-1044 (2018). https://doi.org/10.1142/S0192415X18500532
  12. Kang, M.J., Kwon, E.B., Ryu, H.W., Lee, S., Lee, J.W., Kim, D.Y., Lee, M.K., Oh, S.R., Lee, H.S., Lee, S.U., Kim, M.O., Polyacetylene from Dendropanax morbifera alleviates diet-induced obesity and hepatic steatosis by activating ampk signaling pathway. Front. Pharmacol., 9, 537 (2018).
  13. Brand-Williams, W., Cuvelier, M.-E., Berset, C., Use of a free radical method to evaluate antioxidant activity. LWT-Food sci. Technol., 28, 25-30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5
  14. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231-1237 (1999).
  15. Rajurkar, N.S., Hande, S.M., Estimation of phytochemical content and antioxidant activity of some selected traditional indian medicinal plants. Indian J. Pharm. Sci., 73, 146-151 (2011). https://doi.org/10.4103/0250-474X.91574
  16. Ou, B., Hampsch-Woodill, M., Prior, R.L., Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem., 49, 4619-4626 (2001). https://doi.org/10.1021/jf010586o
  17. Gaggia, F., Baffoni, L., Galiano, M., Nielsen, D.S., Jakobsen, R.R., Castro-Mejia, J.L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G., Di Gioia, D., Kombucha beverage from green, black and rooibos teas: A comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients, 11, 1 (2018).
  18. Pandey, K.B., Rizvi, S.I., Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev., 2, 270-278 (2009). https://doi.org/10.4161/oxim.2.5.9498
  19. Enogieru, A.B., Haylett, W., Hiss, D.C., Bardien, S., Ekpo, O.E., Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxid. Med. Cell Longev., 2018, 6241017 (2018).
  20. Wang, L., Pan, X., Jiang, L., Chu, Y., Gao, S., Jiang, X., Zhang, Y., Chen, Y., Luo, S., Peng, C., The biological activity mechanism of chlorogenic acid and its applications in food industry: a review. Front. Nutr., 9, 943911 (2022).
  21. Chung, I.M., Kim, S.H., Kwon, C., Kim, S.Y., Yang, Y.J., Kim, J.S., Ali, M., Ahmad, A., New chemical constituents from the bark of Dendropanax morbifera leveille and their evaluation of antioxidant activities. Molecules, 24, 3967 (2019).
  22. Youn, J.S., Kim, Y.J., Na, H.J., Jung, H.R., Song, C.K., Kang, S.Y., Kim, J.Y., Antioxidant activity and contents of leaf extracts obtained from Dendropanax morbifera lev are dependent on the collecting season and extraction conditions. Food Sci. Biotechnol., 28, 201-207 (2019). https://doi.org/10.1007/s10068-018-0352-y
  23. Arango Duque, G., Descoteaux, A., Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol,, 5, 491 (2014).
  24. Esposito, K., Nappo, F., Marfella, R., Giugliano, G., Giugliano, F., Ciotola, M., Quagliaro, L., Ceriello, A., Giugliano, D., Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation, 106, 2067-2072 (2002). https://doi.org/10.1161/01.CIR.0000034509.14906.AE
  25. Akram, M., Kim, K.A., Kim, E.S., Syed, A.S., Kim, C.Y., Lee, J.S., Bae, O.N., Potent anti-inflammatory and analgesic actions of the chloroform extract of Dendropanax morbifera mediated by the Nrf2/HO-1 pathway. Biol. Pharm. Bull., 39, 728-736 (2016). https://doi.org/10.1248/bpb.b15-00823
  26. Yao, X., Huang, J., Zhong, H., Shen, N., Faggioni, R., Fung, M., Yao, Y., Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol. Ther., 141, 125-139 (2014). https://doi.org/10.1016/j.pharmthera.2013.09.004
  27. Idriss, H.T., Naismith, J.H., Tnf alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc. Res. Tech., 50, 184-195 (2000). https://doi.org/10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H
  28. Sales, A.L., Iriondo-Dehond, A., Depaula, J., Ribeiro, M., Ferreira, I.M.P.L.V.O., Miguel, M.A.L, Del Castillo, M.D., Farah, A., Intracellular antioxidant and anti-inflammatory effects and bioactive profiles of coffee cascara and black tea kombucha beverages. Foods, 12, 1905 (2023).
  29. Wang, P., Feng, Z., Sang, X., Chen, W., Zhang, X., Xiao, J., Chen, Y., Chen, Q., Yang, M., Su, J., Kombucha ameliorates lps-induced sepsis in a mouse model. Food Funct., 12, 10263-10280 (2021). https://doi.org/10.1039/D1FO01839F