DOI QR코드

DOI QR Code

Effect of Cichorium intybus on production performance, carcass quality and blood lipid profile of hybrid duck

  • Received : 2022.01.26
  • Accepted : 2022.07.26
  • Published : 2023.01.01

Abstract

Objective: One hundred hybrid male ducks (Mojosari×Alabio) were used to examine the efficacy of chicory supplementation as nutritional feed manipulation on production performance, and blood lipid profile of hybrid ducks. Methods: The ducks were tagged, weighed, and then allotted randomly to one of the four treatment diets using a completely randomized design. The experimental diets were: i) P0 (100% basal diets+0% chicory as control), ii) P1 (95% basal diets+5% chicory), iii) P2 (90% basal diets+10% chicory) and iv) P3 (85% basal diets+15% chicory). For each treatment group, there were 5 replicates of 5 birds each. All experimental diets were isonitrogenous and isocaloric using locally available ingredients. Results: Hybrid ducks with fed diets supplemented fresh chicory (5%, 10%, and 15%) showed increased feed intake and body weight gain, as well as feed conversion ratio to be smaller than those ducks fed diets without chicory supplementation (control). The ducks fed 10% chicory supplementation contained significantly (p<0.05) lower ash and higher organic matter contents of meat than those ducks fed other diets. The ducks fed 15% chicory supplementation showed the lowest crude protein and cholesterol content of meat among the treatment diets. Ducks fed chicory supplementation showed lower (p<0.05) blood cholesterol and triglyceride levels than those ducks fed without chicory supplementation, while dietary interventions had no major (p>0.05) influence on low-density lipoprotein and high-density lipoprotein levels in duck blood. Conclusion: In this study, 10% chicory supplementation showed the best results characterized by an increase in growth performance, carcass quality, small intestinal histomorphology, and lower cholesterol levels of meat.

Keywords

References

  1. Ding SR, Li GS, Chen SR, et al. Comparison of carcass and meat quality traits between lean and fat Pekin ducks. Anim Biosci 2021;34:1193-201. https://doi.org/10.5713/ajas.19.0612 
  2. Griffin HD, Cameron ND, Bulfield G. Breeding and trans-genesis as a means of decreasing adiposity in farm animal species: practice and promise. Proc Nutr Soc 1992;51:441-6. https://doi.org/10.1079/PNS19920057
  3. Jiang JF, Song XM, Huang X, et al. Effects of alfalfa meal on growth performance and gastrointestinal tract development of growing ducks. Asian-Australas J Anim Sci 2012;25:144550. https://doi.org/10.5713/ajas.2012.12190 
  4. Ouyang K, Xu M, Jiang Y, Wang W. Effects of alfalfa flavonoids on broiler performance, meat quality, and gene expression. Can J Anim Sci 2016;96:332-41. https://doi.org/10.1139/cjas-2015-0132 
  5. Suwignyo B, Rini EA, Fadli MK, Ariyadi B. Effects of alfalfa (Medicago sativa L.) supplementation in the diet on the growth, small intestinal histomorphology, and digestibility of hybrid ducks. Vet World 2021;14:2719-26. https://doi.org/10.14202/vetworld.2021.2719-2726 
  6. Suwignyo B, Suryanto E, Sasongko H, Erwanto Y, Rini EA. The effect of fresh and hay alfalfa (Medicago sativa L.) supplementation on carcass quality of hybrid duck. IOP Conf Ser Earth Environ Sci 2020;478:012024. https://doi.org/10.1088/1755-1315/478/1/012024 
  7. Umami N, Dewi MP, Suhartanto B, Suseno N, Agus A. Effect of planting densities and fertilization levels on the production and quality of Chicory (Cichorium intybus) in Yogyakarta, Indonesia. IOP Conf Ser Earth Environ Sci 2020;425:012073. https://doi.org/10.1088/1755-1315/425/1/012073 
  8. Nwafor IC, Shale K, Achilonu MC. Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement. Sci World J 2017;2017:7343928. https://doi.org/10.1155/2017/7343928 
  9. Suci DM, Fitria Z, Mutia R. Meat fatty acid and cholesterol content of native Indonesian muscovy duck fed with rice bran in traditional farm. Anim Prod 2017;19:37-45. https://doi.org/10.20884/1.jap.2017.19.1.586 
  10. Suwignyo B, Suryanto E, Samur SIN, Hanim C. The effect of hay alfalfa (Medicago sativa L.) supplementation in different basal feed on the feed intake (FI), body weight, and feed conversion ratio of hybrid ducks. IOP Conf Ser Earth Environ Sci 2021;686:012039. https://doi.org/10.1088/1755-1315/686/1/012039 
  11. Saeed M, Abd El-Hack ME, Alagawany M, et al. Chicory (Cichorium intybus) herb: Chemical composition, pharmacology, nutritional and healthical applications. Int J Pharmacol 2017;13:351-60. https://doi.org/10.3923/ijp.2017.351.360 
  12. NRC. Nutrient requirements of poultry 9th ed. Washington, DC, USA: National Academy Press; 1994. 
  13. SNI. Halal slaughter of poultry. Jakarta, Indonesia: Indonesian National Standard; 2016. pp. 1-19. 
  14. SNI. Quality of carcass and chicken meat. Jakarta, Indonesia: Indonesian National Standard; 2009. pp. 1-7. 
  15. Hamm R. Biochemistry of meat hydration. Adv Food Res 1961;10:355-63.  https://doi.org/10.1016/S0065-2628(08)60141-X
  16. AOAC. Official methods of analysis of AOAC International 18th ed. Arlington, VA, USA: Association of Official Analytical Chemists; 2005. 
  17. Liebermann C. Uber des Oxychinoterpen. Berichte der Dtsch Chem Gesellschaft 1985;18:1803-9. 
  18. Sadeghi A, Toghyani M, Gheisari A. Effect of various fiber types and choice feeding of fiber on performance, gut development, humoral immunity, and fiber preference in broiler chicks. Poult Sci 2015;94:2734-43. https://doi.org/10.3382/ps/pev292 
  19. Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Chem 1969;6:24-7. https://doi.org/10.1177/000456326900600108 
  20. Gopinger E, Xavier EG, Elias MC, et al. The effect of different dietary levels of canola meal on growth performance, nutrient digestibility, and gut morphology of broiler chickens. Poult Sci 2014;93:1130-6. https://doi.org/10.3382/ps.2013-03426 
  21. Gariglio M, Dabbou S, Gai F, et al. Black soldier fly larva in Muscovy duck diets: effects on duck growth, carcass property, and meat quality. Poult Sci 2021;100:101303. https://doi.org/10.1016/j.psj.2021.101303 
  22. Svihus B. Function of the digestive system. J Appl Poult Res 2014;23:306-14. https://doi.org/10.3382/japr.2014-00937 
  23. Zhang YS, Xu YX, Fan WL, Zhou ZK, Zhang ZY, Hou SS. Relationship between residual feed intake and production traits in a population of F2 ducks. J Poult Sci 2019;56:27-31. https://doi.org/10.2141/jpsa.0180008 
  24. Canibe N, Steien SH, Overland M, Jensen BB. Effect of K-diformate in starter diets on acidity, microbiota, and the amount of organic acids in the digestive tract of piglets, and on gastric alterations. J Anim Sci 2001;79:2123-33. https://doi.org/10.2527/2001.7982123x 
  25. Soji Z. Effect of the muscle nanostructure changes during post-mortem aging on tenderness of different beef breeds. Anim Biosci 2021;34:1849-58. https://doi.org/10.5713/ajas.20.0488 
  26. Addini SA, Suwignyo B, Hanim C. Suplementation Alfalfa (Medicago sativa L.) in commercial feed on physic and chemical quality meat of hybrid duck. E3S Web Conf 2020;200:03012. https://doi.org/10.1051/e3sconf/202020003012 
  27. Wang G, Liu J, Xiang S, et al. Influence of in ovo thermal manipulation on lipid metabolism in embryonic duck liver. J Therm Biol 2014;43:40-5. https://doi.org/10.1016/j.jtherbio.2014.05.001 
  28. Ferreira J, Cornacchione M, Liu X, Suarez D. Nutrient composition, forage parameters, and antioxidant capacity of alfalfa (Medicago sativa, L.) in response to saline irrigation water. Agriculture 2015;5:577-97. https://doi.org/10.3390/agriculture5030577 
  29. Jesus GFA, Pereira SA, Owatari MS, et al. Protected forms of sodium butyrate improve the growth and health of Nile tilapia fingerlings during sexual reversion. Aquaculture 2019; 499:119-27. https://doi.org/10.1016/j.aquaculture.2018.09.027 
  30. Abdelqader A, Al-Fataftah AR. Effect of dietary butyric acid on performance, intestinal morphology, microflora composition and intestinal recovery of heat-stressed broilers. Livest Sci 2016;183:78-83. https://doi.org/10.1016/j.livsci.2015.11.026 
  31. Lee SO, Simons AL, Murphy PA, Hendrich S. Soyasaponins lowered plasma cholesterol and increased fecal bile acids in female golden Syrian hamsters. Exp Biol Med 2005;230:4728. https://doi.org/10.1177/153537020523000705 
  32. He J, Zheng H, Pan D, et al. Effects of aging on fat deposition and meat quality in Sheldrake duck. Poult Sci 2018;97:2005-10. https://doi.org/10.3382/ps/pey077 
  33. Zhai SS, Ruan D, Zhu YW, et al. Protective effect of curcumin on ochratoxin A-induced liver oxidative injury in duck is mediated by modulating lipid metabolism and the intestinal microbiota. Poult Sci 2020;99:1124-34. https://doi.org/10.1016/j.psj.2019.10.041 
  34. Xu L, Zhao Y, Xu M, Nie X, Wu N, Tu Y. Formation mechanism of low-density lipoprotein gel induced by NaCl. Poult Sci 2019;98:5166-76. https://doi.org/10.3382/ps/pez232 
  35. Donaldson J, Dangarembizi R, Mtetwa B, Madziva MT, Erlwanger KH. The progressive effects of a high-fat diet on erythrocyte osmotic fragility, growth performance and serum triglyceride and cholesterol levels in Guinea fowl (Numida meleagris) and Muscovy duck (Cairina moschata). J Anim Physiol Anim Nutr (Berl) 2014;98:867-74. https://doi.org/10.1111/jpn.12149