DOI QR코드

DOI QR Code

Position of Hungarian Merino among other Merinos, within-breed genetic similarity network and markers associated with daily weight gain

  • Attila, Zsolnai (Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvar Campus) ;
  • Istvan, Egerszegi (Department of Animal Husbandry Technology and Animal Welfare, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvar Campus) ;
  • Laszlo, Rozsa (Hungarian University of Agriculture and Life Sciences, Georgikon Campus) ;
  • David, Mezoszentgyorgyi (Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvar Campus) ;
  • Istvan, Anton (Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvar Campus)
  • Received : 2021.10.07
  • Accepted : 2022.05.18
  • Published : 2023.01.01

Abstract

Objective: In this study, we aimed to position the Hungarian Merino among other Merinoderived sheep breeds, explore the characteristics of our sampled animals' genetic similarity network within the breed, and highlight single nucleotide polymorphisms (SNPs) associated with daily weight-gain. Methods: Hungarian Merino (n = 138) was genotyped on Ovine SNP50 Bead Chip (Illumina, San Diego, CA, USA) and positioned among 30 Merino and Merino-derived breeds (n = 555). Population characteristics were obtained via PLINK, SVS, Admixture, and Treemix software, within-breed network was analysed with python networkx 2.3 library. Daily weight gain of Hungarian Merino was standardised to 60 days and was collected from the database of the Association of Hungarian Sheep and Goat Breeders. For the identification of loci associated with daily weight gain, a multi-locus mixed-model was used. Results: Supporting the breed's written history, the closest breeds to Hungarian Merino were Estremadura and Rambouillet (pairwise FST values are 0.035 and 0.036, respectively). Among Hungarian Merino, a highly centralised connectedness has been revealed by network analysis of pairwise values of identity-by-state, where the animal in the central node had a betweenness centrality value equal to 0.936. Probing of daily weight gain against the SNP data of Hungarian Merinos revealed five associated loci. Two of them, OAR8_17854216.1 and s42441.1 on chromosome 8 and 9 (-log10P>22, false discovery rate<5.5e-20) and one locus on chromosome 20, s28948.1 (-log10P = 13.46, false discovery rate = 4.1e-11), were close to the markers reported in other breeds concerning daily weight gain, six-month weight, and post-weaning gain. Conclusion: The position of Hungarian Merino among other Merino breeds has been determined. We have described the similarity network of the individuals to be applied in breeding practices and highlighted several markers useful for elevating the daily weight gain of Hungarian Merino.

Keywords

Acknowledgement

This research has received a financial grant entitled TJUGEN from the Hungarian Ministry of Agriculture. The authors express their gratitude to the Association of Hungarian Sheep and Goat Breeders for providing the samples and for the supportive conversations regarding our research. Many thanks to the research of Ciani et al [3] for providing the basis of the comparison of Hungarian Merino to other sheep breeds. Thanks to Anneliese Kleinschmidt for proofreading the manuscript. Thanks to our reviewers for providing their valuable notices, comments, and questions, and many thanks to the editorial staff as well.

References

  1. Szabo M, Kusza Sz, Csizi I, Monori I. Role of Hungarian Merinos in the sheep husbandry. Agrartudomanyi Kozlemenyek 2016;69:1-6.
  2. Diez-Tascon C, Littlejohn RP, Almeida PAR, Crawford AM. Genetic variation within the Merino sheep breed: analysis of closely related populations using microsatellites. Anim Genet 2000;31:243-51. https://doi.org/10.1046/j.1365-2052.2000.00636.x
  3. Ciani E, Lasagna E, D'Andrea M, et al. Merino and Merino-derived sheep breeds: a genome-wide intercontinental study. Genet Sel Evol 2015;47:64. https://doi.org/10.1186/s12711-015-0139-z
  4. Eber E. Progress of animal husbandry in Hungary. Budapest, Hungary: Agroinform Kiadohaz; 1996.
  5. Nagy Zs, Nemeth A, Mihalyfi S, Toldi Gy, Gergatz E, Hollo I. The short history of Hungarian sheep breeding and Hungarian Merino breed. Acta Agr Kapos 2011;15:19-26.
  6. Kovacsy B. Sheep husbandry. Budapest, Hungary: Athenaeum Irodalmi es Nyomdai Tarsulat Kiadasa; 1923.
  7. Javorka L, Annus K, Maroti-Agots A, Gaspardy A. Impact of imre festetics on the Hungarian sheep husbandry. In: 56th Georgikon Conference 2014; 2014 Oct 2-3; Keszthely, Hungary [cited 2021 Oct 10]. Available from: https://napok.georgikon.hu/hu/cikkadatbazis/cikkek-2012/doc_download/223-javorka-levente-annus-kata-maroti-agots-akos-gaspardyandras-hogy-jutott-el-hazankba-az-aranygyapju-festeticsimre-allattenyesztoi-szemszogbol
  8. Schandl J. Sheep husbandry. Budapest, Hungary: Mezogazdasagi Kiado; 1966.
  9. Veress L, Jankowski ST, Schwark HJ. Sheperd's book. Budapest, Hungary: Mezogazdasagi Kiado; 1982.
  10. Vahid Y, Kobori J. Breeding and selection of Merinos. Budapest, Hungary: Szaktudas Kiado Haz Rt.; 2002.
  11. Fesus L, Safar L, Hajduk P, Szekely P. Role of Merinos in the Hungarian sheep husbandry. Magyar Allattenyesztok Lapja 2002;30:8-9.
  12. Horn P. Cattle, sheep and horse breeding. Budapest, Hungary: Mezogazda Kiado; 1995.
  13. Javor A. Domestic trading, accurately. Magyar Mezogazdasag, Magyar Juhaszat es Kecsketenyesztes melleklete 2005;14:6-7.
  14. Megdiche S, Mastrangelo S, Hamouda MB, Lenstra JA, Ciani E. A combined multi-cohort approach reveals novel and known genome-wide selection signatures for wool traits in Merino and Merino-derived sheep breeds. Front Genet 2019;10:1025. https://doi.org/10.3389/fgene.2019.01025
  15. Addo S, Klingel S, Hinrichs D, Thaller G. Runs of homozygosity and NetView analyses provide new insight into the genome-wide diversity and admixture of three German cattle breeds. PLOS ONE 2019;14:e0225847. https://doi.org/10.1371/journal.pone.0225847
  16. Zhang L, Liu J, Zhao F, et al. Genome-wide association studies for growth and meat production traits in sheep. PLOS ONE 2013;8:e66569. https://doi.org/10.1371/journal.pone.0066569
  17. Wang H, Zhang L, Cao J, et al. Genome-wide specific selection in three domestic sheep breeds. PLOS ONE 2015;10:e0128688. https://doi.org/10.1371/journal.pone.0128688
  18. Lu Z, Yue Y, Yuan C, et al. Genome-wide association study of body weight traits in Chinese fine-wool sheep. Animals 2020;10:170. https://doi.org/10.3390/ani10010170
  19. Zhang Y, Xue X, Liu Y, et al. Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep. Sci Rep 2021;11:2466. https://doi.org/10.1038/s41598-021-81932-y
  20. Instruction manual typifix system [Internet]. Hilgertshausen, Germany: Agrobiogen GmBH, [cited 2021 Oct 10]. Available from: https://docplayer.net/45787904-Instruction-manualtypifix-system-copyright-agrobiogen.html
  21. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution 1984;38:1358-70. https://doi.org/10.2307/2408641
  22. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLOS Genet 2006;2:e190. https://doi.org/10.1371/journal.pgen.0020190
  23. Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics 2011;12:246. https://doi.org/10.1186/1471-2105-12-246
  24. Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PlOS Genet 2012;8:e1002967. https://doi.org/10.1371/journal.pgen.1002967
  25. Felsenstein J. PHYLIP - phylogeny inference package (Version 3.2). Cladistics 1989;5:164-6.
  26. Barabasi AL. Network science. Budapest, Hungary: Libri Konyvkiado; 2017. Available from: http://networksciencebook.com/
  27. Segura V, Vilhjalmsson BJ, Platt A, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 2012;44:825-30. https://doi.org/10.1038/ng.2314
  28. Thomson TE, Winney IS, Salles OC, Pujol B. A guide to using a multiple-matrix animal model to disentangle genetic and nongenetic causes of phenotypic variance. PLOS ONE 2018;3:e0197720. https://doi.org/10.1371/journal.pone.0197720
  29. SNP & Variation Suite v8.9.0 manual [Internet]. Bozeman, MT, USA: GoldenHelix [cited 2021 Febr 12]. Available from: https://doc.goldenhelix.com/SVS/latest/svsmanual/mixedModelMethods/overview.html?highlight=effect%20estimates