Acknowledgement
This research has received a financial grant entitled TJUGEN from the Hungarian Ministry of Agriculture. The authors express their gratitude to the Association of Hungarian Sheep and Goat Breeders for providing the samples and for the supportive conversations regarding our research. Many thanks to the research of Ciani et al [3] for providing the basis of the comparison of Hungarian Merino to other sheep breeds. Thanks to Anneliese Kleinschmidt for proofreading the manuscript. Thanks to our reviewers for providing their valuable notices, comments, and questions, and many thanks to the editorial staff as well.
References
- Szabo M, Kusza Sz, Csizi I, Monori I. Role of Hungarian Merinos in the sheep husbandry. Agrartudomanyi Kozlemenyek 2016;69:1-6.
- Diez-Tascon C, Littlejohn RP, Almeida PAR, Crawford AM. Genetic variation within the Merino sheep breed: analysis of closely related populations using microsatellites. Anim Genet 2000;31:243-51. https://doi.org/10.1046/j.1365-2052.2000.00636.x
- Ciani E, Lasagna E, D'Andrea M, et al. Merino and Merino-derived sheep breeds: a genome-wide intercontinental study. Genet Sel Evol 2015;47:64. https://doi.org/10.1186/s12711-015-0139-z
- Eber E. Progress of animal husbandry in Hungary. Budapest, Hungary: Agroinform Kiadohaz; 1996.
- Nagy Zs, Nemeth A, Mihalyfi S, Toldi Gy, Gergatz E, Hollo I. The short history of Hungarian sheep breeding and Hungarian Merino breed. Acta Agr Kapos 2011;15:19-26.
- Kovacsy B. Sheep husbandry. Budapest, Hungary: Athenaeum Irodalmi es Nyomdai Tarsulat Kiadasa; 1923.
- Javorka L, Annus K, Maroti-Agots A, Gaspardy A. Impact of imre festetics on the Hungarian sheep husbandry. In: 56th Georgikon Conference 2014; 2014 Oct 2-3; Keszthely, Hungary [cited 2021 Oct 10]. Available from: https://napok.georgikon.hu/hu/cikkadatbazis/cikkek-2012/doc_download/223-javorka-levente-annus-kata-maroti-agots-akos-gaspardyandras-hogy-jutott-el-hazankba-az-aranygyapju-festeticsimre-allattenyesztoi-szemszogbol
- Schandl J. Sheep husbandry. Budapest, Hungary: Mezogazdasagi Kiado; 1966.
- Veress L, Jankowski ST, Schwark HJ. Sheperd's book. Budapest, Hungary: Mezogazdasagi Kiado; 1982.
- Vahid Y, Kobori J. Breeding and selection of Merinos. Budapest, Hungary: Szaktudas Kiado Haz Rt.; 2002.
- Fesus L, Safar L, Hajduk P, Szekely P. Role of Merinos in the Hungarian sheep husbandry. Magyar Allattenyesztok Lapja 2002;30:8-9.
- Horn P. Cattle, sheep and horse breeding. Budapest, Hungary: Mezogazda Kiado; 1995.
- Javor A. Domestic trading, accurately. Magyar Mezogazdasag, Magyar Juhaszat es Kecsketenyesztes melleklete 2005;14:6-7.
- Megdiche S, Mastrangelo S, Hamouda MB, Lenstra JA, Ciani E. A combined multi-cohort approach reveals novel and known genome-wide selection signatures for wool traits in Merino and Merino-derived sheep breeds. Front Genet 2019;10:1025. https://doi.org/10.3389/fgene.2019.01025
- Addo S, Klingel S, Hinrichs D, Thaller G. Runs of homozygosity and NetView analyses provide new insight into the genome-wide diversity and admixture of three German cattle breeds. PLOS ONE 2019;14:e0225847. https://doi.org/10.1371/journal.pone.0225847
- Zhang L, Liu J, Zhao F, et al. Genome-wide association studies for growth and meat production traits in sheep. PLOS ONE 2013;8:e66569. https://doi.org/10.1371/journal.pone.0066569
- Wang H, Zhang L, Cao J, et al. Genome-wide specific selection in three domestic sheep breeds. PLOS ONE 2015;10:e0128688. https://doi.org/10.1371/journal.pone.0128688
- Lu Z, Yue Y, Yuan C, et al. Genome-wide association study of body weight traits in Chinese fine-wool sheep. Animals 2020;10:170. https://doi.org/10.3390/ani10010170
- Zhang Y, Xue X, Liu Y, et al. Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep. Sci Rep 2021;11:2466. https://doi.org/10.1038/s41598-021-81932-y
- Instruction manual typifix system [Internet]. Hilgertshausen, Germany: Agrobiogen GmBH, [cited 2021 Oct 10]. Available from: https://docplayer.net/45787904-Instruction-manualtypifix-system-copyright-agrobiogen.html
- Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution 1984;38:1358-70. https://doi.org/10.2307/2408641
- Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLOS Genet 2006;2:e190. https://doi.org/10.1371/journal.pgen.0020190
- Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics 2011;12:246. https://doi.org/10.1186/1471-2105-12-246
- Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PlOS Genet 2012;8:e1002967. https://doi.org/10.1371/journal.pgen.1002967
- Felsenstein J. PHYLIP - phylogeny inference package (Version 3.2). Cladistics 1989;5:164-6.
- Barabasi AL. Network science. Budapest, Hungary: Libri Konyvkiado; 2017. Available from: http://networksciencebook.com/
- Segura V, Vilhjalmsson BJ, Platt A, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 2012;44:825-30. https://doi.org/10.1038/ng.2314
- Thomson TE, Winney IS, Salles OC, Pujol B. A guide to using a multiple-matrix animal model to disentangle genetic and nongenetic causes of phenotypic variance. PLOS ONE 2018;3:e0197720. https://doi.org/10.1371/journal.pone.0197720
- SNP & Variation Suite v8.9.0 manual [Internet]. Bozeman, MT, USA: GoldenHelix [cited 2021 Febr 12]. Available from: https://doc.goldenhelix.com/SVS/latest/svsmanual/mixedModelMethods/overview.html?highlight=effect%20estimates