DOI QR코드

DOI QR Code

Performance Analysis of a Hybrid Desiccant Cooling System for Residential Air Conditioning in the Seoul Region under the Climate Scenarios SSP5 and SSP1

기후 시나리오 SSP5와 SSP1에서의 2100년 서울 지역에서의 여름철 주택 냉방을 위한 하이브리드 제습 냉방 시스템 성능 분석

  • YULHO LEE (Department of Mechanical Engineering, Hongik University General Graduate School) ;
  • SUNGJIN PARK (Department of Mechanical Engineering, Hongik University General Graduate School)
  • 이율호 (홍익대학교 일반대학원 기계공학과) ;
  • 박성진 (홍익대학교 일반대학원 기계공학과)
  • Received : 2023.10.30
  • Accepted : 2023.12.04
  • Published : 2023.12.30

Abstract

In this study, a comparative analysis between an electric heat pump cooling system and a hybrid desiccant cooling system is conducted. Desiccant cooling is a thermal driven system with potentially lower electric power consumption than electric heat pump. Hybrid desiccant cooling system simulation includes components such as a desiccant rotor, direct and indirect evaporative coolers, heat exchangers, fans, and a heat pump system. Using dynamic simulations by climate conditions, house cooling temperatures and power consumption for both systems are analyzed for 16 days period in the summer season under climate scenarios for the year 2100 prediction. The results reveal that the hybrid desiccant cooling system exhibits a 5-18% reduction in electric consumption compared to the heat pump system.

Keywords

Acknowledgement

이 논문은 2022년도 산업통상자원부의 재원으로 한국산업기술평가관리원의 지원(RS-2022-00144016)과 과학기술정보통신부의 재원으로 한국연구재단의 지원(2021R1A2C1095028)을 받아 수행된 연구임.

References

  1. International Energy Agency (IEA), "The future of cooling in Southeast Asia: increasing energy efficiency through stronger policy action", IEA, 2019. Retrieved from https://www.iea.org/reports/the-future-of-cooling-in-southeast-asia.
  2. International Energy Agency (IEA), "The future of cooling: opportunities for energy-efficient air conditioning", IEA, 2018. Retrieved from https://www.iea.org/reports/the-future-of-cooling.
  3. J. In, Y. Lee, S. Kang, and S. Park, "Analysis of performance and energy saving of a SOFC-based hybrid desiccant cooling system", Journal of Hydrogen and New Energy, Vol. 30, No. 2, 2019, pp. 136-146, doi: https://doi.org/10.7316/KHNES.2019.30.2.136.
  4. D. La, Y. J. Dai, Y. Li, R. Z. Wang, and T. S. Ge, "Technical development of rotary desiccant dehumidification and air conditioning: a review", Renewable and Sustainable Energy Reviews, Vol. 14, No. 1, 2010, pp. 130-147, doi: https://doi.org/10.1016/j.rser.2009.07.016.
  5. Y. Lee, S. Park, and S. Kang, "Performance analysis of a solid desiccant cooling system for a residential air conditioning system", Applied Thermal Engineering, Vol. 182, 2021, pp. 116091, doi: https://doi.org/10.1016/j.applthermaleng.2020.116091.
  6. Y. Lee, S. Park, and S. Kang, "Operational optimization of a hybrid desiccant cooling system for building air conditioning system", Heat and Mass Transfer, Vol. 59, 2023, pp. 39-54, doi: https://doi.org/10.1007/s00231-022-03240-z.
  7. Y. Yang, C. Ren, C. Yang, M. Tu, B. Luo, and J. Fu, "Energy and exergy performance comparison of conventional, dew point and new external-cooling indirect evaporative coolers", Energy Conversion and Management, Vol. 230, 2021, pp. 113824, doi: https://doi.org/10.1016/j.enconman.2021.113824.
  8. J. D. Liang, C. L. Kao, L. K. Tsai, Y. C. Chiang, H. C. Tsai, and S. L. Chen, "Performance investigation of a hybrid groundassisted desiccant cooling system", Energy Conversion and Management, Vol. 265, 2022, pp. 115765, doi: https://doi.org/10.1016/j.enconman.2022.115765.
  9. Y. Chen, Y. Yin, and X. Zhang, "Performance analysis of a hybrid air-conditioning system dehumidified by liquid desiccant with low temperature and low concentration", Energy and Buildings, Vol. 77, 2014, pp. 91-102, doi: https://doi.org/10.1016/j.enbuild.2014.03.050.
  10. D. B. Jani, M. Mishra, and P. K. Sahoo, "Experimental investigation on solid desiccant-vapor compression hybrid airconditioning system in hot and humid weather" Applied Thermal Engineering, Vol. 104, 2016, pp. 556-564, doi: https://doi.org/10.1016/j.applthermaleng.2016.05.104.
  11. D. B. Jani, M. Mishra, and P. K. Sahoo, "Investigations on effect of operational conditions on performance of solid desiccant based hybrid cooling system in hot and humid climate", Thermal Science and Engineering Progress, Vol. 7, 2018, pp. 76-86, doi: https://doi.org/10.1016/j.tsep.2018.05.005.
  12. H. O. Portner, D. C. Roberts, M. M. B. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegria, M. Craig, S. Langsdorf, S. Loschke, V. Moller, A. Okem, and B. Rama, "Climate change 2022: impacts, adaptation and vulnerability. Working Group II contribution to the sixth assessment report of the intergovernmental panel on climate change", IPCC, 2022. Retrieved from https://www.ipcc.ch/report/ar6/wg2/.
  13. K. Riahi, D. P. van Vuuren, E. Kriegler, J. Edmonds, B. C. O'Neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko, W. Lutz, A. Popp, J. C. Cuaresma, S. KC, M. Leimbach, L. Jiang, T. Kram, S. Rao, J. Emmerling, K. Ebi, T. Hasegawa, P. Havlik, F. Humpenoder, L. A. Da Silva, S. Smith, E. Stehfest, V. Bosett, J. Eom, D. Gernaat, T. Masui, J. Rogelj, J. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen, K. Takahashi, L. Baumstark, J. C. Doelman, M. Kainuma, Z. Klimont, G. Marangoni, H. Lotze-Campen, M. Obersteiner, A. Tabeau, and M. Tavoni, "The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview", Global Environmental Change, Vol. 42, 2017, pp. 153-168, doi: https://doi.org/10.1016/j.gloenvcha.2016.05.009.
  14. Korea Meteorological Administration (KMA), "Climate change scenario", KMA, 2023. Retrieved from http://www.climate.go.kr/home/CCS/contents_2021/35_download.php.
  15. E. Van Den Bulck, "Analaysis of solid desiccant rotary dehumidifiers [Master's thesis]", Madison (WI): University of Wisconsin-Madison; 1983.
  16. G. Stiesch, "Performance of rotary enthalpy exchangers [Master's thesis]", Madison (WI): University of Wisconsin-Madison; 1994.
  17. F. E. Nia, D. van Paassen, and M. H. Saidi, "Modeling and simulation of desiccant wheel for air conditioning", Energy and Buildings, Vol. 38, No. 10, 2006, pp. 1230-1239, doi:https://doi.org/10.1016/j.enbuild.2006.03.020.
  18. B. Riangvilaikul and S. Kumar, "An experimental study of a novel dew point evaporative cooling system", Energy and Buildings, Vol. 42, No. 5, 2010, pp. 637-644, doi: https://doi.org/10.1016/j.enbuild.2009.10.034.
  19. J. Lee and D. Y. Lee, "Experimental study of a counter flow regenerative evaporative cooler with finned channels", International Journal of Heat and Mass Transfer, Vol. 65, 2013, pp. 173-179, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.069.
  20. Korean Agency for Technology and Standards, "KS C 9306: air-conditioner", Korean Standards Service Network, 2017. Retrieved from https://standard.go.kr/KSCI/standardIntro?getStandardSearchView.do?ksNo=KSC9306.