Acknowledgement
본 연구는 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구입니다(20206710100060, 분산발전 가스터빈용 수소전소 저 NOx 연소기 개발). 본 연구는 산업통상자원부(MOTIE)와 한국산업기술평가관리원의 지원을 받아 수행한 연구 과제이며 이에 감사드립니다(RS-2022-00155547).
References
- R. Banihabib and M. Assadi, "A hydrogen-fueled micro gas turbine unit for carbon-free heat and power generation", Sustainability, Vol. 14, No. 20, 2022, pp. 13305, doi: https://doi.org/10.3390/su142013305.
- H. L. Yip, A. Srna, A. C. Y. Yuen, S. Kook, R. A. Taylor, G. H. Yeoh, P. R. Medwell, and Q. N. Chan, "A review of hydrogen direct injection for internal combustion engines: towards carbon-free combustion", Applied Sciences, Vol. 9, No. 22, 2019, pp. 4842, doi: https://doi.org/10.3390/app9224842.
- H. H. W. Funke, N. Beckmann, and S. Abanteriba, "An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications", International Journal of Hydrogen Energy, Vol. 44, No. 13, 2019, pp. 6978-6990, doi: https://doi.org/10.1016/j.ijhydene.2019.01.161.
- F. Dawood, M. Anda, and G. M. Shafiullah, "Hydrogen production for energy: an overview", International Journal of Hydrogen Energy, Vol. 45, No. 7, 2020, pp. 3847-3869, doi: https://doi.org/10.1016/j.ijhydene.2019.12.059.
- S. Verhelst and T. Wallner, "Hydrogen-fueled internal combustion engines", Progress in Energy and Combustion Science, Vol. 35, No. 6, 2009, pp. 490-527, doi: https://doi.org/10.1016/j.pecs.2009.08.001.
- J. Jeon and S. J. Kim, "Recent progress in hydrogen flammability prediction for the safe energy systems", Energies, Vol. 13, No. 23, pp. 6263, doi: https://doi.org/10.3390/en13236263.
- Z. Wan, Y. Tao, J. Shao, Y. Zhang, and H. You, "Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells", Energy Conversion and Management, Vol. 228, 2021, pp. 113729, doi: https://doi.org/10.1016/j.enconman.2020.113729.
- B. Mei, J. Zhang, X. Shi, Z. Xi, and Y. Li, "Enhancement of ammonia combustion with partial fuel cracking strategy: laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm", Combustion and Flame, Vol. 231, 2021, pp. 111472, doi: https://doi.org/10.1016/j.combustflame.2021.111472.
- S. Lee, Y. Choi, C. Park, H. Kim, Y. D. Lee, and Y. S. Kim, "A study on ammonia reforming catalyst and reactor design for 10 kW class ammonia-hydrogen dual-fuel engine", Journal of Hydrogen and New Energy, Vol. 31, No. 4, 2020, pp. 372-379, doi: https://doi.org/10.7316/KHNES.2020.31.4.372.
- H. Kobayashi, A. Hayakawa, K. D. K. A. Somarathne, and E. C. Okafor, "Science and technology of ammonia combustion", Proceedings of the Combustion Institute, Vol. 37, No. 1, 2019, pp. 109-133, doi: https://doi.org/10.1016/j.proci.2018.09.029.
- W. S. Chai, Y. Bao, P. Jin, G. Tang, and L. Zhou, "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels", Renewable and Sustainable Energy Reviews, Vol. 147, 2021, pp. 111254, doi: https://doi.org/10.1016/j.rser.2021.111254.
- H. Xiao, M. Howard, A. Valera-Medina, S. Dooley, and P. J. Bowen, "Study on reduced chemical mechanisms of ammonia/methane combustion under gas turbine conditions", Energy & Fuels, Vol. 30, No. 10, 2016, pp. 8701-8710, doi: https://doi.org/10.1021/acs.energyfuels.6b01556.
- G. B. Ariemma, G. Sorrentino, R. Ragucci, M. de Joannon b, and P. Sabia, "Ammonia/methane combustion: stability and NOx emissions", Combustion and Flame, Vol. 241, 2022, pp. 112071, doi: https://doi.org/10.1016/j.combustflame.2022.112071.
- C. Lhuillier, P. Brequigny, F. Contino, and C. Mounaim-Rousselle, "Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions", Fuel, Vol. 269, 2020, pp. 117448, doi: https://doi.org/10.1016/j.fuel.2020.117448.
- M. Richter, R. Schultheis, J. R. Dawson, A. Gruber, R. S. Barlow, A. Dreizler, and D. Geyer, "Extinction strain rates of premixed ammonia/hydrogen/nitrogen-air counterflow flames", Proceedings of the Combustion Institute, Vol. 39, No. 2, 2023, pp. 2027-2035, doi: https://doi.org/10.1016/j.proci.2022.09.011.
- S. Ishizuka and C. K. Law, "An experimental study on extinction and stability of stretched premixed flames", Symposium (International) on Combustion, Vol. 19, No. 1, 1982, pp. 327-335, doi: https://doi.org/10.1016/S0082-0784(82)80204-X.
- S. K. Choi, E. S. Cho, and S. H. Chung, "Quantification of extinction mechanism in counterflow premixed flames", Journal of Mechanical Science and Technology, Vol. 28, No. 9, 2014, pp. 3863-3871, doi: https://doi.org/10.1007/s12206-014-0850-7.
- C. J. Sung, J. B. Liu, and C. K. Law, "Structural response of counterflow diffusion flames to strain rate variations", Combustion and Flame, Vol. 102, No. 4, 1995, pp. 481-492, doi: https://doi.org/10.1016/0010-2180(95)00041-4.
- H. G. Im, C. K. Law, J. S. Kim, and F. A. Williams, "Response of counterflow diffusion flames to oscillating strain rates", Combustion and Flame, Vol. 100, No. 1-2, 1995, pp. 21-30, doi: https://doi.org/10.1016/0010-2180(94)00059-2.
- E. Jin and K. Lee, "Numerical study on the NH3/CH4 symmetric premixed counterflow flames: part I characteristics of extinction behavior", Journal of Hydrogen and New Energy, Vol. 34, No. 1, 2023, pp. 47-58, doi: https://doi.org/10.7316/KHNES.2023.34.1.47.
- R. J. Kee, J. A. Miller, G. H. Evans, and G. Dixon-Lewis, "A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames", Sy mposium (International) on Combustion, Vol. 22, No. 1, 1989, pp. 1479-1494, doi: https://doi.org/10.1016/S0082-0784(89)80158-4.
- A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. Rupley, "OPPDIF: a fortran program for computing opposed-flow diffusion flames", Sandia Report, 1997, doi: https://doi.org/10.2172/568983.
- X. Li, L. Jia, T. Onishi, P. Grajetzki, H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta, "Study on stretch extinction limits of CH4/CO2 versus high temperature O2/CO2 counterflow non-premixed flames", Combustion and Flame, Vo l. 161, No. 6, 2014, pp. 1526-1536, doi: https://doi.org/10.1016/j.combustflame.2013.12.004.
- S. Colson, Y. Hirano, A. Hayakawa, T. Kudo, H. Kobayashi, C. Galizzi, and D. Escudie, "Experimental and numerical study of NH3/CH4 counterflow premixed and non-premixed flames for various NH3 mixing ratios", Combustion Science and Technology, Vol. 193, No. 16, 2021, pp. 2872-2889, doi: https://doi.org/10.1080/00102202.2020.1763326.
- E. C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, and H. Kobayashi, "Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames", Combustion and Flame, Vol. 187, 2018, pp. 185-198, doi: https://doi.org/10.1016/j.combustflame.2017.09.002.
- H. Xiao, S. Lai, A. Valera-Medina, J. Li, J. Liu, and H. Fu, "Study on counterflow premixed flames using high concentration ammonia mixed with methane", Fuel, Vol. 275, 20 20, pp. 117902, doi: https://doi.org/10.1016/j.fuel.2020.117902.
- S. Colson, A. Hayakawa, T. Kudo, and H. Kobayashi, "Extinction characteristics of ammonia/air counterflow premixed flames at various pressures", Journal of Thermal Science and Technology, Vol. 11, No. 3, 2016, pp. JTST0048, doi: https://doi.org/10.1299/jtst.2016jtst0048.