DOI QR코드

DOI QR Code

Numerical Study on the NH3/CH4 Symmetric Premixed Counterflow Flames Part II: Investigation of Flame Structure and Reaction Path

암모니아/메탄 예혼합 대향류 대칭 화염에 관한 수치 해석적 연구: Part II 화염의 구조 및 반응 경로 해석

  • JINSEONG KIM (Center for Aerospace Engineering Research, School of Mechanical and Aerospacae Engineering, Sunchon National University) ;
  • KEEMAN LEE (Center for Aerospace Engineering Research, School of Mechanical and Aerospacae Engineering, Sunchon National University)
  • 김진성 (국립순천대학교 기계우주항공공학부 우주항공연구센터) ;
  • 이기만 (국립순천대학교 기계우주항공공학부 우주항공연구센터)
  • Received : 2023.10.19
  • Accepted : 2023.11.20
  • Published : 2023.12.30

Abstract

Numerical analysis was conducted to confirm the characteristics of extinction behavior in NH3/CH4 counterflow symmetrical flames. Numerical simulations were run on CHEMKIN-PRO, using the OPPDIF code, with Okafor's mechanisms, which had the lowest error rate compared to Colson's experimental data in the our previous part I study. The chemical interactions of merged flames were examined by analyzing the production rate of major chemical species and key radicals with the volume fractional percentage of ammonia and global strain rate. The interaction phenomenon of the flames could be identified by observing the main chemical reaction path of the merged flames at the stagnation plane.

Keywords

Acknowledgement

본 연구는 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구입니다(20206710100060, 분산발전 가스터빈용 수소전소 저 NOx 연소기 개발). 본 연구는 산업통상자원부(MOTIE)와 한국산업기술평가관리원의 지원을 받아 수행한 연구 과제이며 이에 감사드립니다(RS-2022-00155547).

References

  1. R. Banihabib and M. Assadi, "A hydrogen-fueled micro gas turbine unit for carbon-free heat and power generation", Sustainability, Vol. 14, No. 20, 2022, pp. 13305, doi: https://doi.org/10.3390/su142013305. 
  2. H. L. Yip, A. Srna, A. C. Y. Yuen, S. Kook, R. A. Taylor, G. H. Yeoh, P. R. Medwell, and Q. N. Chan, "A review of hydrogen direct injection for internal combustion engines: towards carbon-free combustion", Applied Sciences, Vol. 9, No. 22, 2019, pp. 4842, doi: https://doi.org/10.3390/app9224842. 
  3. H. H. W. Funke, N. Beckmann, and S. Abanteriba, "An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications", International Journal of Hydrogen Energy, Vol. 44, No. 13, 2019, pp. 6978-6990, doi: https://doi.org/10.1016/j.ijhydene.2019.01.161. 
  4. F. Dawood, M. Anda, and G. M. Shafiullah, "Hydrogen production for energy: an overview", International Journal of Hydrogen Energy, Vol. 45, No. 7, 2020, pp. 3847-3869, doi: https://doi.org/10.1016/j.ijhydene.2019.12.059. 
  5. S. Verhelst and T. Wallner, "Hydrogen-fueled internal combustion engines", Progress in Energy and Combustion Science, Vol. 35, No. 6, 2009, pp. 490-527, doi: https://doi.org/10.1016/j.pecs.2009.08.001. 
  6. J. Jeon and S. J. Kim, "Recent progress in hydrogen flammability prediction for the safe energy systems", Energies, Vol. 13, No. 23, pp. 6263, doi: https://doi.org/10.3390/en13236263. 
  7. Z. Wan, Y. Tao, J. Shao, Y. Zhang, and H. You, "Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells", Energy Conversion and Management, Vol. 228, 2021, pp. 113729, doi: https://doi.org/10.1016/j.enconman.2020.113729. 
  8. B. Mei, J. Zhang, X. Shi, Z. Xi, and Y. Li, "Enhancement of ammonia combustion with partial fuel cracking strategy: laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm", Combustion and Flame, Vol. 231, 2021, pp. 111472, doi: https://doi.org/10.1016/j.combustflame.2021.111472. 
  9. S. Lee, Y. Choi, C. Park, H. Kim, Y. D. Lee, and Y. S. Kim, "A study on ammonia reforming catalyst and reactor design for 10 kW class ammonia-hydrogen dual-fuel engine", Journal of Hydrogen and New Energy, Vol. 31, No. 4, 2020, pp. 372-379, doi: https://doi.org/10.7316/KHNES.2020.31.4.372. 
  10. H. Kobayashi, A. Hayakawa, K. D. K. A. Somarathne, and E. C. Okafor, "Science and technology of ammonia combustion", Proceedings of the Combustion Institute, Vol. 37, No. 1, 2019, pp. 109-133, doi: https://doi.org/10.1016/j.proci.2018.09.029. 
  11. W. S. Chai, Y. Bao, P. Jin, G. Tang, and L. Zhou, "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels", Renewable and Sustainable Energy Reviews, Vol. 147, 2021, pp. 111254, doi: https://doi.org/10.1016/j.rser.2021.111254. 
  12. H. Xiao, M. Howard, A. Valera-Medina, S. Dooley, and P. J. Bowen, "Study on reduced chemical mechanisms of ammonia/methane combustion under gas turbine conditions", Energy & Fuels, Vol. 30, No. 10, 2016, pp. 8701-8710, doi: https://doi.org/10.1021/acs.energyfuels.6b01556. 
  13. G. B. Ariemma, G. Sorrentino, R. Ragucci, M. de Joannon b, and P. Sabia, "Ammonia/methane combustion: stability and NOx emissions", Combustion and Flame, Vol. 241, 2022, pp. 112071, doi: https://doi.org/10.1016/j.combustflame.2022.112071. 
  14. C. Lhuillier, P. Brequigny, F. Contino, and C. Mounaim-Rousselle, "Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions", Fuel, Vol. 269, 2020, pp. 117448, doi: https://doi.org/10.1016/j.fuel.2020.117448. 
  15. M. Richter, R. Schultheis, J. R. Dawson, A. Gruber, R. S. Barlow, A. Dreizler, and D. Geyer, "Extinction strain rates of premixed ammonia/hydrogen/nitrogen-air counterflow flames", Proceedings of the Combustion Institute, Vol. 39, No. 2, 2023, pp. 2027-2035, doi: https://doi.org/10.1016/j.proci.2022.09.011. 
  16. S. Ishizuka and C. K. Law, "An experimental study on extinction and stability of stretched premixed flames", Symposium (International) on Combustion, Vol. 19, No. 1, 1982, pp. 327-335, doi: https://doi.org/10.1016/S0082-0784(82)80204-X. 
  17. S. K. Choi, E. S. Cho, and S. H. Chung, "Quantification of extinction mechanism in counterflow premixed flames", Journal of Mechanical Science and Technology, Vol. 28, No. 9, 2014, pp. 3863-3871, doi: https://doi.org/10.1007/s12206-014-0850-7. 
  18. C. J. Sung, J. B. Liu, and C. K. Law, "Structural response of counterflow diffusion flames to strain rate variations", Combustion and Flame, Vol. 102, No. 4, 1995, pp. 481-492, doi: https://doi.org/10.1016/0010-2180(95)00041-4. 
  19. H. G. Im, C. K. Law, J. S. Kim, and F. A. Williams, "Response of counterflow diffusion flames to oscillating strain rates", Combustion and Flame, Vol. 100, No. 1-2, 1995, pp. 21-30, doi: https://doi.org/10.1016/0010-2180(94)00059-2. 
  20. E. Jin and K. Lee, "Numerical study on the NH3/CH4 symmetric premixed counterflow flames: part I characteristics of extinction behavior", Journal of Hydrogen and New Energy, Vol. 34, No. 1, 2023, pp. 47-58, doi: https://doi.org/10.7316/KHNES.2023.34.1.47. 
  21. R. J. Kee, J. A. Miller, G. H. Evans, and G. Dixon-Lewis, "A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames", Sy mposium (International) on Combustion, Vol. 22, No. 1, 1989, pp. 1479-1494, doi: https://doi.org/10.1016/S0082-0784(89)80158-4. 
  22. A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. Rupley, "OPPDIF: a fortran program for computing opposed-flow diffusion flames", Sandia Report, 1997, doi: https://doi.org/10.2172/568983. 
  23. X. Li, L. Jia, T. Onishi, P. Grajetzki, H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta, "Study on stretch extinction limits of CH4/CO2 versus high temperature O2/CO2 counterflow non-premixed flames", Combustion and Flame, Vo l. 161, No. 6, 2014, pp. 1526-1536, doi: https://doi.org/10.1016/j.combustflame.2013.12.004. 
  24. S. Colson, Y. Hirano, A. Hayakawa, T. Kudo, H. Kobayashi, C. Galizzi, and D. Escudie, "Experimental and numerical study of NH3/CH4 counterflow premixed and non-premixed flames for various NH3 mixing ratios", Combustion Science and Technology, Vol. 193, No. 16, 2021, pp. 2872-2889, doi: https://doi.org/10.1080/00102202.2020.1763326. 
  25. E. C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, and H. Kobayashi, "Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames", Combustion and Flame, Vol. 187, 2018, pp. 185-198, doi: https://doi.org/10.1016/j.combustflame.2017.09.002. 
  26. H. Xiao, S. Lai, A. Valera-Medina, J. Li, J. Liu, and H. Fu, "Study on counterflow premixed flames using high concentration ammonia mixed with methane", Fuel, Vol. 275, 20 20, pp. 117902, doi: https://doi.org/10.1016/j.fuel.2020.117902. 
  27. S. Colson, A. Hayakawa, T. Kudo, and H. Kobayashi, "Extinction characteristics of ammonia/air counterflow premixed flames at various pressures", Journal of Thermal Science and Technology, Vol. 11, No. 3, 2016, pp. JTST0048, doi: https://doi.org/10.1299/jtst.2016jtst0048.