DOI QR코드

DOI QR Code

Particle-Structure Collision Modeling for Topology Optimization

위상최적설계를 위한 입자-구조 충돌 모델

  • Young Hun Choi (Department of Mechanical Convergence Engineering, Hanyang University) ;
  • Gil Ho Yoon (Department of Mechanical Engineering, Hanyang University)
  • 최영훈 (한양대학교 기계공학부) ;
  • 윤길호 (한양대학교 기계공학부)
  • Received : 2023.09.19
  • Accepted : 2023.10.16
  • Published : 2023.12.31

Abstract

This paper presents a particle-structure collision model for topology optimization, which requires sensitivity analysis. Therefore, a new model that incorporates sensitivity analysis is needed. The proposed particle-structure collision model conducts sensitivity analysis for topology optimization. To evaluate the accuracy of the proposed model, it was applied to a simplified one-dimensional collision problem. Optimization of the final positions of particles using topology optimization through this model confirmed the suitability of the proposed approach. These results demonstrate that it is possible to consider particle-structure collision in topology optimization.

본 논문에서는 위상최적설계를 위한 입자-구조 충돌 모델을 제시한다. 위상최적설계를 위해서는 민감도 분석이 선행되어야 하며, 민감도 분석이 가능한 새로운 모델이 필요하다. 본 논문에서는 위상최적설계를 위한 민감도 분석을 수행하기 위한 입자-구조 충돌 모델을 제시한다. 이후 이 모델을 이용하여 위상최적설계를 위한 민감도 분석을 수행한다. 제안한 모델의 정확도를 평가하기 위해 먼저 단순화된 1차원 충돌 문제에 적용한다. 이후, 이 모델을 이용하여 위상 최적화를 통해 입자의 최종 위치를 최적화하여 위상 최적화에 대한 이 모델의 적용 가능성을 확인한다. 이러한 결과는 위상 최적화에서 입자-구조 충돌을 고려하는 것이 가능하다는 것을 보여준다.

Keywords

Acknowledgement

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (2021202080026D, Development of platform technology and operation management system for design and operating condition di-agnosis of fluid machinery with variable devices based on AI/ICT).

References

  1. Andreasen, C.S. (2020) A Framework for Topology Optimization of Inertial Microfluidic Particle Manipulators, Struct. & Multidiscip. Optim., 61(6), pp.2481~2499. https://doi.org/10.1007/s00158-019-02483-5
  2. Bendsoe, M.P., Kikuchi, N. (1988) Generating Optimal Topologies in Structural Design using a Homogenization Method, Comput. Methods Appl. Mech. & Eng., 71(2), pp.197~224. https://doi.org/10.1016/0045-7825(88)90086-2
  3. Borrvall, T., Petersson, J. (2003) Topology Optimization of Fluids in Stokes Flow, Int. J. Numer. Methods Fluids, 41(1), pp.77~107. https://doi.org/10.1002/fld.426
  4. Choi, Y.H., Yoon, G.H. (2023) A MATLAB Topology Optimization Code to Control the Trajectory of Particle in Fluid, Struct. & Multidiscip. Optim., 66(4), p.91.
  5. Gersborg-Hansen, A., Sigmund, O., Haber, R.B. (2005) Topology Optimization of Channel Flow Problems, Struct.. & Multidiscip. Optim., 30(3), pp.181~192. https://doi.org/10.1007/s00158-004-0508-7
  6. Sigmund, O. (2001) A 99 Line Topology Optimization Code Written in Matlab, Struct. & Multidiscip. Optim., 21(2), pp.120~127. https://doi.org/10.1007/s001580050176
  7. Svanberg, K. (1987) The Method of Moving Asymptotes-a New Method for Structural Optimization, Int. J. Numer. Methods Eng., 24(2), pp.359~373. https://doi.org/10.1002/nme.1620240207
  8. Yoon, G.H. (2020) Transient Sensitivity Analysis and Topology Optimization for Particle Motion in Steady State Laminar Fluid, Comput. Methods Appl. Mech. & Eng., 367, p.113096.
  9. Yoon, G.H. (2022) Transient Sensitivity Analysis and Topology Optimization of Particle Suspended in Transient Laminar Fluid, Comput. Methods Appl. Mech. & Eng., 393, p.114696.
  10. Yoon, G.H., So, H. (2021) Development of Topological Optimization Schemes Controlling the Trajectories of Multiple Particles in Fluid, Struct. Multidiscip. Optim., 63, pp.2355~2373. https://doi.org/10.1007/s00158-020-02817-8