DOI QR코드

DOI QR Code

3차원 Arbitrary Lagrangian-Eulerian 기법을 사용한 자유 대기 중 폭발 해석의 최적 격자망 크기 산정

Optimal Mesh Size in Three-Dimensional Arbitrary Lagrangian-Eulerian Method of Free-air Explosions

  • 이예나 (한국과학기술원 건설 및 환경공학과 ) ;
  • 이태희 (한국과학기술원 건설 및 환경공학과 ) ;
  • 박다원 (한국과학기술원 건설 및 환경공학과 ) ;
  • 최영준 (한국과학기술원 건설 및 환경공학과 ) ;
  • 홍정욱 (한국과학기술원 건설 및 환경공학과)
  • Yena Lee (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Tae Hee Lee (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Dawon Park (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Youngjun Choi (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jung-Wuk Hong (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2023.08.01
  • 심사 : 2023.10.05
  • 발행 : 2023.12.31

초록

폭발 수치해석 기법 중 Arbitrary Lagrangian-Eulerian(ALE)는 구조물의 파괴뿐만 아니라 폭발 이후 충격파의 전파 과정까지 관찰할 수 있는 장점이 있다. 그러나 동적 해석 시 유한요소 모델의 격자망 크기가 일정 수준 이하로 감소하게 되면 해석 결과의 신뢰도가 부정확해진다. 본 연구에서는 ALE 수치해석 기법을 활용하여 대기의 격자망 크기가 해석의 정확도에 미치는 영향을 조사한다. 다양한 조건의 격자망 크기와 폭발 중량을 갖는 대기 중 폭발모델을 구축하고, 폭발 중심으로부터 거리에 따른 폭발압력을 관찰한다. 수치해석과 실험에서 얻은 최대 폭발압력 결과에 대해 평균 제곱 오차를 계산하여 최적의 격자망 크기를 제안하고, 제안된 크기를 바탕으로 폭발물 중량과 대기의 최적 격자망 크기에 대한 상관관계를 분석한다. 본 연구는 다양한 중량을 가진 폭발물 해석에서 최적의 격자망 크기를 제공함으로써 신뢰성이 향상된 폭발 수치해석 모델 개발에 도움이 될 것으로 기대한다.

The arbitrary Lagrangian-Eulerian (ALE) method has been extensively researched owing to its capability to accurately predict the propagation of blast shock waves. Although the use of the ALE method for dynamic analysis can produce unreliable results depending on the mesh size of the finite element, few studies have explored the relationship between the mesh size for the air domain and the accuracy of numerical analysis. In this study, we propose a procedure to calculate the optimal mesh size based on the mean squared error between the maximum blast pressure values obtained from numerical simulations and experiments. Furthermore, we analyze the relationship between the weight of explosive material (TNT) and the optimal mesh size of the air domain. The findings from this study can contribute to estimating the optimal mesh size in blast simulations with various explosion weights and promote the development of advanced blast numerical analysis models.

키워드

과제정보

본 연구는 원자력안전위원회의 재원으로 한국원자력안전재단의 지원을 받아 수행한 원자력안전연구사업의 연구결과입니다(No. 00242257).

참고문헌

  1. Borvik, T., Hanssen, A.G., Langseth, M., Olovsson, L. (2009) Response of Structures to Planar Blast Loads-A Finite Element Engineering Approach, Comput. & Struct., 87(9-10), pp.507~520. https://doi.org/10.1016/j.compstruc.2009.02.005
  2. Bransford, J.W., Gayle, J.B. (1965) Size and Duration of Fireballs from Propellant Explosions, No.NASA-TM-X-53314, National Space and Aeronautics Administration, USA.
  3. Brode, H.L. (1955) Numerical Solutions of Spherical Blast Waves, J. Appl. Phys., 26(6), pp.766~775. https://doi.org/10.1063/1.1722085
  4. Cheng, D.S., Hung, C.W., Pi, S.J. (2013) Numerical Simulation of Near-Field Explosion, J. Appl. Sci. & Eng., 16(1), pp.61~67.
  5. Choi, H., Shin, D.H., Kim, M.S., Kim, D.J., Kim, H., Lee, Y.H. (2013) A Study on the Proposal of Residual Strength Equation of Reinforced Concrete Columns under Blast Load, J. Korean Soc. Hazard Mitig., 13(1), pp.17~24.
  6. Choi, M., Sin, P. (2014) An Analysis on the Main Causes of Explosion in Industrial Settings and a Study on its Prevention, J. Korean Soc. Hazard Mitig., 14(2), pp.209~216. https://doi.org/10.9798/KOSHAM.2014.14.2.209
  7. Cook, R.D. (2007) Concepts and Applications of Finite Element Analysis, John Wiley & Sons.
  8. Dobratz, B.M., Crawford, P.C. (1985) LLNL Explosives-Handbook: Properties of Chemical Explosives and Explosive Simulants, Report No. UCRL-52997-Chg.2, Lawrence Livermore National Laboratory, USA.
  9. Donea, J., Huerta, A., Ponthot, J.P., Rodriguez-Ferran, A. (2004) Arbitrary L Agrangian-E Ulerian Methods, Encyclopedia of Computational Mechanics.
  10. Filice, A., Mynarz, M., Zinno, R. (2022) Experimental and Empirical Study for Prediction of Blast Loads, Appl. Sci., 12(5), p.2691.
  11. Gang, H.G., Jeong, Y.U., Hong, J.U. (2012) Overview of Blast Load Analysis, Comput. Struct. Eng., 25(4), pp.57~62.
  12. Groger, B., Wang, J., Batzel, T., Hornig, A., Gude, M. (2022) Modelling and Simulation Strategies for Fluid-Structure-Interactions of Highly Viscous Thermoplastic Melt and Single Fibres-A Numerical Study, Mater., 15(20), p.7241.
  13. Henrych, J., Abrahamson, G.R. (1980) The Dynamics of Explosion and Its Use, J. Appl. Mech., 47(1), p.218.
  14. Jang, I.H. (2007) Sloshing Response Analysis of LNG Carrier Tank Using Fluid Structure Interaction Analysis Technique of LS-DYNA 3D, Doctoral Dissertation, Korea Maritime and Ocean University.
  15. Jung, J.W., Hong, J.W. (2021) Blast Response Simulation of the Alfred Murrah Building Reinforced by Use of HPFRCC, Int. J. Concr. Struct. & Mater., 15(1), pp.1~16. https://doi.org/10.1186/s40069-020-00434-9
  16. Kim, J.H. (2007) Shock Response Analysis under Underwater Explosion for Underwater Ship using ALE Technique, J. Korean Soc. Mar. Environ. & Energy,10(4), pp.218~226.
  17. Kingery, C.N., Bulmash, G. (1984) Airblast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst, US Army Armament and Development Center, Ballistic Research Laboratory.
  18. Kinney, G.F., Graham, K.J. (2013) Explosive Shocks in Air, Springer Science & Business Media. p.269.
  19. Kwasniewski, L., Balcerzak, M., Wojciechowski, J. (2010) A Feasibility Study on Modeling Blast Loading using ALE Formulation, In Cost Action C, 26, pp.127~132.
  20. Larcher, M. (2007) Simulation of the Effects of an Air Blast Wave, Luxemburg Office of Official Publications of the European Communities.
  21. LSTC, L.D. (2013) Keyword User's Manual Volume II-Material Models, Livermore Software, 887.
  22. Nassiri, A., Chini, G., Vivek, A., Daehn, G., Kinsey, B. (2015) Arbitrary Lagrangian-Eulerian Finite Element Simulation and Experimental Investigation of Wavy Interfacial Morphology during High Velocity Impact Welding, Mater. & Des., 88, pp.345~358. https://doi.org/10.1016/j.matdes.2015.09.005
  23. Nassiri, A., Kinsey, B. (2016) Numerical Studies on High-Velocity Impact Welding: Smoothed Particle Hydrodynamics(SPH) and Arbitrary Lagrangian-Eulerian (ALE), J. Manuf. Processes, 24, pp.376~381. https://doi.org/10.1016/j.jmapro.2016.06.017
  24. Mills, C.A. (1988) The Design of Concrete Structures to Resist Explosions and Weapon Effects, FIP Notes, 2, pp.11~15.
  25. Shin, H.S., Kim, S.W., Moon, J.H. (2022) Applicability Analysis of the FE Analysis Method Based on the Empirical Equation for Near-field Explosions, J. Comput, Struct, Eng. Inst. Korea, 35(6), pp.333~342. https://doi.org/10.7734/COSEIK.2022.35.6.333
  26. Shin, J., Kim, J. (2016) Effects of Near-Field Explosion of High Explosives on Blast Overpressures and Impulses, J. Korean Soc. Hazard Mitig., 16(6), pp.21~28. https://doi.org/10.9798/KOSHAM.2016.16.6.21
  27. Sonntag, R.E., Borgnakke, C ., Van Wylen, G.J., Van Wyk, S. (2003) Fundamentals of Thermodynamics, 6thed., New York: Wiley.
  28. US Department of Defense (2008) Structures to Resist the Effects of Accidental Explosions, UFC 3-340-02.
  29. Wang, S., Islam, H., Soares, C.G. (2021) Uncertainty due to Discretization on the ALE Algorithm for Predicting Water Slamming Loads, Mar. Struct., 80, p.103086.
  30. Wu, J., Liu, Z., Yu, J., Xu, S. (2022) Experimental and Numerical Investigation of Normal Reinforced Concrete Panel Strengthened with Polyurea under Near-Field Explosion, J. Build. Eng., 46, p.103763.
  31. Xu, Q.P., Su, J.J., Li, Z.R., Liu, Y., Jiang, H.Y., Huang, F.L. (2020) Air Blast Pressure Characteristics of Moving Charge, J. Phys.: Conf. Ser., 1507(3), p.032052. IOP Publishing.