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INTRODUCTION
Reconstructing the mandible in young patients is considered un-
common and complex [1,2]. To date, approximately 30 cases of 
pediatric mandibular reconstruction have been documented in 

the English literature. Of these, 13 involved free flap reconstruc-
tions, 11 used non-vascularized reconstructions, and seven em-
ployed both techniques [1-30]. The intricacy of this procedure 
arises from the need for a thorough understanding of the devel-
opmental changes in bone and soft tissue at both the donor and 
recipient sites [26]. The choice of treatment for a mandibular de-
fect, a crucial part of managing jaw tumors, varies based on the 
geographical and developmental context. Western centers often 
opt for primary or secondary reconstruction with vascularized 
osseous flaps and distraction osteogenesis. In contrast, develop-
ing healthcare systems like ours in Nigeria frequently use non-
vascularized bone grafts, capitalizing on the high incidence of be-
nign mandibular lesions in children [26-28,31]. A third treatment 
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option, periosteum-mediated bone regeneration (PMBR) of the 
mandible, is commonly used in developing healthcare systems 
and is gradually gaining acceptance at Western centers [32,33]. 
To date, 32 case series involving 63 cases have been reported [32-
63], with 44% (28/63) of these cases originating from Africa 
[33,34,41,50,52,54,55,57]. This trend may be due to limited facili-
ties that hinder immediate or vascularized reconstruction. De-
spite the limited understanding and unpredictability of PMBR, 
there are no concerns about changes in donor and recipient tis-
sues during growth and development.

In our previous clinical work on PMBR of the mandible in hu-
mans [33], we, like others, described it as an unexpected clinical 
phenomenon following periosteum-preserved mandibular resec-
tion by sub-periosteal dissection (Fig. 1A). This process is char-
acterized by bone formation induced by the periosteum in an iat-
rogenic mandibular defect, provided three conditions are met: an 
intact periosteum, a mandibular segment as an inducer agent, 
and a young patient [32,39,64]. While these three conditions are 
generally required for PMBR, they are not absolute. There have 
been reports of the entire mandible regenerating [52] and adult 
periosteum undergoing bone regeneration, despite the preference 
to use PMBR with young periosteum [37,39]. This suggests that 
young periosteum may retain its osteocompetency despite in-
creasing age [33]. PMBR is only indicated for benign lesions, as 
the periosteum needs to be preserved. Regarding its protocol, we 
reported that the regenerative potential of the mandibular perios-
teum begins as early as 7 to 10 days and can regenerate up to a bi-
mandibular regenerative span of approximately 8 cm in length. 

We also noted that PMBR for the mandible can be classified as 
“complete” (i.e., regenerated bone occupying > 50% of the radio-
graphic defect) or “incomplete” (i.e., irregular in outline and oc-
cupying < 50% of the radiographic defect) (Fig. 1B) [33]. 

While research on bone repair and regeneration is ongoing, the 
definitive role of the periosteum and the molecular pathways 
that regulate bone regeneration in mammals remain largely un-
known [65]. Genetic determinants, as revealed through expres-
sion analysis, involve gene transcription and translation to func-
tional gene products (RNA and protein) (Fig. 2). This is consid-
ered an accurate method for investigating genetic associations, as 
it provides insight into normal cellular processes [66]. Gene ex-
pression analysis can be broadly divided into RNA expression by 
transcription, protein expression by translation, and post-trans-
lational modification. However, RNA and protein expression 
levels are most commonly used for analysis. The techniques used 
to analyze gene expression include DNA arrays and real-time 
polymerase chain reaction (RT-PCR) for RNA expression, and 
Western blotting and gel electrophoresis for protein expression 
analyses [66,67]. The aim of this study was to conduct a system-
atic review of the genetic determinants of PMBR in mammals.

METHODS
Search strategy
Our search methodology was designed in accordance with the 
PRISMA (Preferred Reporting Items for Systematic Review and 
Meta-Analysis) guidelines [68]. We used a Cochrane-style ap-

A B

Fig. 1. A case involving sub-periosteal dissection with arch bar placement. (A) A 10-year-old boy with right mandibular unicystic ameloblas-
toma (canine to ramus). (B) At 11 months postoperative, with complete periosteum-mediated bone regeneration.

Fig. 2. Gene expression flow diagram.
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proach, employing MeSH terms and keywords related to peri-
osteum, craniofacial and/or bone regeneration, as well as asso-
ciated gene expression studies and techniques such as DNA ar-
ray and RT-PCR. The initial search was conducted using the 
following tools: PubMed, Ovid Medline, and Web of Science.

Eligibility criteria
Only English-language publications were reviewed, and the se-
lected studies included cross-sectional studies, case-control 
studies, and controlled clinical trials. The titles and abstracts of 
these publications were reviewed to identify suitable articles, and 
the selected manuscripts were then proofread. Additional publi-
cations were retrieved and reviewed from the reference list of 
this initial search to identify potential papers that met the study’s 
criteria. All studies were required to use proprietary named kits 
for gene expression studies, in accordance with the manufactur-
er’s protocol. Articles that were purely clinical, related to pathol-
ogy, conference proceedings, or only abstracts were excluded.

Quality appraisal
The quality of each publication was assessed using a modified 
version of a pre-existing tool, Strengthening the Reporting of 
Genetic Association studies (STREGA) [69]. This involved eval-
uating each article for the following elements: characterization of 
periosteum-mediated craniofacial bone regeneration, descrip-
tion of the case and control screening population, inclusion of 
gene or variant ID (e.g., National Center for Biotechnology In-
formation rs identification, evaluation of gene function or Gene 
Ontology identifiers), and measurement of genetic associations. 

Additionally, the difference in gene expression between 7 and 15 
days was reviewed. This time frame was chosen based on reports 
that bone regeneration can begin as early as 7 to 10 days [33]. 

Data extraction and analysis
All results were compiled into a data form for tabulation. We 
used the SPSS 27 software package (IBM Corp.) for statistical 
analysis. We recorded the sample size, age range, and mean or 
median of subjects with paired sample data during the expres-
sion analysis to provide descriptive statistical information. When 
a microarray was used to analyze differential gene expression, we 
applied a fold change threshold in accordance with the manufac-
turer’s protocol to determine the significance of gene expression.

RESULTS
The electronic search yielded 69 citations. However, 57 of these 
publications were discarded due to their lack of relevance to the 
search objectives. Specifically, 38 were descriptive studies, nine 
were conference proceedings, eight were observational studies, 
and two were duplicate studies. This left 12 publications for a 
full-text review. After a more detailed review, an additional eight 
studies were eliminated because they were purely clinical (ob-
servational) and had no correlation with gene expression. Con-
sequently, only four studies [70-73] met the inclusion criteria 
(Fig. 3). 

Three out of the four studies had a modified STREGA score of 
≥ 3 (Table 1). The study subjects and tissues were Wistar rat cal-
varia in two studies, mini-pigs in one study, and calves and mice 

Fig. 3. PRISMA flowchart.
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in one study. The techniques used to examine gene expression 
included microarrays, RT-PCR, and transcriptomics, with results 
assessed on days 7 and 15. In summary, the results indicated an 
increase in the activity of genes responsible for angiogenesis, cy-
tokine activities, immune-inflammatory responses, and skeletal 
development. Genes associated with cytokine and immune-in-
flammatory responses, such as cytokines (interleukin-1β and in-
terleukin-6), cathepsin K, and receptor activator of nuclear factor 
kappa-B ligand, were primarily implicated on day 7. In contrast, 
osteoblast-specific genes, including those coding for runt-related 
transcription factor 2, collagen type 1, osteonectin, and osteocal-
cin/osteopontin, were primarily implicated on day 15 (Table 2). 
Additionally, several biological signaling pathways, such as bone 
morphogenetic protein (BMP)-2, hedgehog, PDGF, Notch, and 
Wnt, were also implicated on day 15 (Table 3).

DISCUSSION
The bones in the craniofacial and appendicular regions develop 
differently. Specifically, the former originates from ectodermal 
neural crest cells of the closing neural tubes, which gives its 
periosteum and ossification patterns distinct characteristics 
compared to appendicular bones [74-76]. Craniofacial bone 
matures through an intramembranous process, characterized 
by various mesenchymal cells differentiating into bone-depos-
iting osteoblasts or ossification centers, and eventually forming 
compact bone [77]. In contrast, appendicular bone develops 
through endochondral ossification, characterized by cell differ-
entiation into chondrocyte-synthesized collagen, which ma-
tures through proliferation and then templates the shape of the 
future bone [78,79]. Despite these differences, intramembra-
nous and endochondral bone developments share similar regu-
latory mechanisms [77,80]. 

Bone repair or regeneration is generally believed to be driven 

Table 1. Modified STREGA quality score for each publication
Publication PMBR description Use of controls NCBI ID No./ Variant types Validation of results Reported data as risk ratio Quality score (0–5)

Li et al. [70 ] Yes Yes Yes No Yes 4

Al-Kattan et al. [71] Yes No Yes No Yes 3

Ivanovski et al. [72] Yes No Yes No Yes 3

Matsushima et al. [73] Yes Yes No No No 2

STREGA, Strengthening the Reporting of Genetic Association studies; PMBR, periosteum-mediated bone regeneration; NCBI, National Center for Biotechnology Information.

Table 2. Publications with specimens and gene expression data on days 7 and 15

Publication Subjects Mean age 
(mo) Genes upregulated-day 7 Genes upregulated-day 15 Upregulated, 

No. (%)
Downregulated, 

No. (%)

Li et al. [70] 6 Mini-pigs 18 Inflammatory & immune 
response 

SDGs, TGF-β /BMP, Wnt, and 
Notch pathways

1,065 (55) 877 (45)

Al-Kattan et al. [71] 6 Wistar rats 6 Angiogenesis, NF-kappa β 
pathways, Inflammatory & 
immune response 

SDGs, TGF-β/BMP, Wnt pathways 361 (67) 177 (33)

Ivanovski et al. [72] 6 Wistar rats 6 Inflammatory and immune 
response

SDGs, TGF-β /BMP, and 
Wnt pathways

41 (76) 13 (24)

Matsushima et al. [73] 3 Calves & mice <6 ND SDGs 4 ND

SDG, skeletal developmental gene; TGF-β, transforming growth factor β; BMP, bone morphogenetic protein; ND, not disclosed.

Table 3. Upregulated gene groups on day 15 (genes selected if the fold change between expression levels was ≥2.0)

Publication Screening assay Upregulated SDGs with 
high fold change

Upregulated Wnt 
signaling pathway genes

TGF-β/BMP signaling 
pathway-related 

genes upregulated

Notch signaling 
pathway-related 

genes upregulated

Li et al. [70] Microarray (APGA) Th bs3, Dmp1, Pthlh, Osteocalcin, 
Msx1, Runx2, Collagen XI, XIII

Fzrb, Cpz, Wisp2, Wifi, Apc2 Thbs3, Map3k1, Frzb, 
Tgfb3, Dlx5

Notch4, Cfd, Foxc1

Al-Kattan et al. [71] Microarray (ARGA) Bglap2, Dmp1, Bmp3, Col11a2 Frzb, Dkk3 ND ND

Ivanovski et al. [72] Microarray (ARGA) Osteocalcin, Dmp1, Col13a1, Omd, 
Igfbp5, Mepe, Satb2, Runx2, Pthr1, Acan

Cpz, Wif1, Fzrb, Dkk3, 
Fzd6,8, Lrp4

Thbs4, Bambi, Ltbp3, 
Pdgfrb, Bmp2

ND

Matsushima et al. [73] qRT-PCR Collagen I & II, Runx, Bsp ND ND ND

SDG, skeletal developmental gene; TGF-β, transforming growth factor β; BMP, bone morphogenetic protein; APGA, Agilent porcine gene array; ARGA, Affymetrix rat genome ar-
ray; ND, not disclosed; qRT-PCR, quantitative real-time polymerase chain reaction.



https://doi.org/10.7181/acfs.2023.00381

255

by the periosteum, but the precise role of the periosteum in bone 
regeneration remains unclear [77,78]. It consists of four succes-
sive phases: an initial inflammatory response and recruitment of 
osteo-progenitor cells, formation of a cartilaginous template, re-
placement of the template with immature (spongy) bone, and fi-
nally remodeling into mature bone. The periosteum is the pri-
mary driver throughout all four phases [80]. In the author’s 
opinion, an improved understanding of the periosteum’s role 
could provide a clear solution for bone repair or reconstruction, 
offering benefits such as low cost and reduced morbidity from a 
non-existent donor site. However, its unpredictability and lack 
of consensus among clinicians remain significant drawbacks. 
While few genetic association studies on PMBR have been con-
ducted in humans, some have been carried out in animal mod-
els, which was the focus of this study.

The limited number of studies that met this study’s inclusion 
criteria highlights the scarcity of publications on this topic, even 
in animals. Additional searches revealed no reports on the un-
derlying molecular mechanism of the periosteum in bone re-
generation. One of the four studies that met the inclusion crite-
ria was deemed to be below the required quality score due to a 
lack of Gene Ontology identifiers [73]. This same report also 
used RT-PCR, unlike the other three studies that used microar-
rays. The absence of Gene Ontology identifiers prevented spe-
cific gene expression interpretation, which would have facilitat-
ed the comparison of both techniques.

According to this review, skeleto-developmental and immune-
inflammatory responses were the major events implicated in bone 
regeneration. The reports suggest that the inflammatory-immune 
response was unique and different from that of typical soft tissue 
wound healing [81-83]. In addition to these two mechanisms, an-
giogenesis and neurogenesis also occurred. While new vessel for-
mation is a well-recognized requirement for bone regeneration, 
neurogenesis was somewhat surprising. However, there have 
been reports suggesting that new nerve fiber formation promotes 
osteogenesis [84-86]. Furthermore, references to gene expression 
in PMBR were sought between 7 and 15 days because PMBR 
manifests clinically as early as 7 to 10 days. The upregulation of 
inflammatory and immune response at 7 days was expected, and 
this supports the initial inflammatory phase of bone regeneration. 
However, the additional responses of the I-kB kinase/NF-kB sig-
naling pathway were interesting, as this is a known pathway re-
ported to induce inflammation-induced bone loss [87]. In week 2, 
the upregulated pathways (transforming growth factor [TGF]-be-
ta/BMP, Wnt, and Notch) are known to upregulate skeletal devel-
opmental gene (SDG) expression. While these pathways are well-
known skeletal development pathways, BMP signaling is the only 
pathway suspected to be associated with bone regeneration, and 

BMP2 is suggested to regulate PMBR through periosteum-based 
target cells [88,89]. Additionally, the Wnt signaling pathway was 
another upregulated response noted in week 2. However, unlike 
the Bmp target cells, the Wnt target cells reside in fractured bones, 
suggesting that the Wnt pathway might influence more of bone 
repair than regeneration, albeit through a different mechanism 
from the Bmp signaling [90,91]. 

While PMBR shows significant potential for bone reconstruc-
tion, particularly in the mandible, the impact on developmental 
growth following pediatric mandibular reconstruction remains 
uncertain and requires further research. This uncertainty arises 
from several factors. For instance, the condyle is a site of man-
dibular growth, and whether it is involved or preserved could 
influence jaw growth after PMBR. While it is known that fac-
tors such as the patient’s age can affect the rate of growth, other 
factors such as radiotherapy and chemotherapy are not a con-
cern because PMBR is not recommended for malignant lesions 
[12,26,33].

In conclusion, this review aimed to harmonize various reports 
on the intricate processes of PMBR in the mandible, focusing on 
gene expressions and signaling pathways. The findings suggest 
that the gene expression patterns of PMBR may be characterized 
by skeletal morphogenesis, which is regulated by SDGs and 
pathways. Immune-inflammatory genes seem to be predomi-
nantly upregulated in the first week, while SDGs and signaling 
pathways are upregulated in the second week. One limitation of 
this study is that it only characterized events based on whether 
gene regulation is up or down between the first and second 
week. Furthermore, due to the tissue heterogeneity in the perios-
teum, it was impossible to attribute a specific phenotypic or mo-
lecular event to a particular cell type. This was due to the lack of 
histological analysis, which meant the source of these events 
could not be localized. Additionally, the analysis only considered 
actively expressed genes at the transcription level, which may not 
correspond to the protein coded for or expressed. Therefore, in-
tegrating the assays used in these reports with immunohisto-
chemistry or proteomics may provide a more accurate depiction 
of bone regeneration events, and could be a focus for future 
studies. Lastly, factors such as the patient’s age at the time of re-
construction and condylar preservation should be carefully con-
sidered during PMBR to ensure optimal results.
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