DOI QR코드

DOI QR Code

Transcriptome analysis revealed regulatory mechanisms of light and culture density on free-living sporangial filaments of Neopyropia yezoensis (Rhodophyta)

  • Bangxiang He (CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences) ;
  • Zhenbin Zheng (CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences) ;
  • Jianfeng Niu (CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences) ;
  • Xiujun Xie (CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences) ;
  • Guangce Wang (CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences)
  • Received : 2023.08.16
  • Accepted : 2023.12.12
  • Published : 2023.12.21

Abstract

Previous research indicated that free-living sporangial filament keep hollow morph under high-culture density and form bipartite cells under low-culture density, while the following conchospore release was inhibited by high light. Here, we further explored the molecular bases of these affects caused by light and culture density using a transcriptome analysis. Many differentially expressed genes (DEGs) related to carbon dioxide concentration and fixation, photosynthesis, chlorophyll synthesis and nitrogen absorption were upregulated under high-light conditions compared with low-light conditions, indicating the molecular basis of rapid vegetative growth under the former. The stress response- and ion transport-related DEGs, as well as the gene encoding the vacuole formation-brefeldin A-inhibited guanine nucleotide exchange protein (BIG, py05721), were highly expressed under high-density conditions, indicating the molecular basis of the hollow morph of free-living sporangial filaments under high-culture density conditions. Additionally, the brefeldin A treatment indicated that the hollow morph was directly influenced by vacuole formation-related vesicle traffic. Others DEGs related to cell wall components, zinc-finger proteins, ASPO1527, cell cycle and cytoskeleton were highly expressed in the low density with low-light group, which might be related to the formation and release of conchospores. These results provide a deeper understanding of sporangial filaments in Neopyropia yezoensis and related species.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (32202907, 42376091, 42276146), the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research and Development Program (2022LZGC004), the Research Fund for the Taishan Scholar Project of Shandong Province (tspd20210316), and China Agriculture Research System of MOF and MARA (CARS-50).

References

  1. Blouin, N., Fei, X., Jiang, P., Yarish, C. & Brawley, S. H. 2007. Seeding nets with neutral spores of the red alga Porphyra umbilicalis (L.) Kutzing for use in integrated multitrophic aquaculture (IMTA). Aquaculture 270:77-91.  https://doi.org/10.1016/j.aquaculture.2007.03.002
  2. Chen, G. 1980. Studies on the free conchocelis filament culture and seeding in Porphyra haitanensis. J. Fish. China 4:19-29. 
  3. Chen, N., Tang, L., Guan, X., Chen, R., Cao, M., Mao, Y. & Wang, D. 2019. Thallus sectioning as an efficient monospore release method in Pyropia yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 32:2195-2200. 
  4. Gui, Y. 1981. The cause and solution of intracellular contents in free-living sporangial filaments become empty of Porphyra haitanensis. Mar. Fish. 3:9-10. 
  5. He, B., Gu, W., Wang, L., Zheng, Z., Shao, Z., Huan, L., Zhang, B., Ma, Y., Niu, J., Xie, X. & Wang, G. 2021a. RNA-seq between asexual archeospores and meiosis-related conchospores in Neopyropia yezoensis using Smart-seq2. J. Phycol. 57:1648-1658.  https://doi.org/10.1111/jpy.13197
  6. He, B., Niu, J., Xie, X. & Wang, G. 2021b. Development of freeliving sporangial filaments regulated by light and culture density in Neopyropia yezoensis. Algal Res. 58:102378. 
  7. He, P. & Yarish, C. 2006. The developmental regulation of mass cultures of free-living conchocelis for commercial net seeding of Porphyra leucosticta from Northeast America. Aquaculture 257:373-381.  https://doi.org/10.1016/j.aquaculture.2006.03.017
  8. Ishitani, M., Nakamura, T., Han, S. Y. & Takabe, T. 1995. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol. Biol. 27:307-315.  https://doi.org/10.1007/BF00020185
  9. Kim, D., Langmead, B. & Salzberg, S. L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12:357-360.  https://doi.org/10.1038/nmeth.3317
  10. Kim, J. K., Yarish, C., Hwang, E. K., Park, M. & Kim, Y. 2017. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32:1-13.  https://doi.org/10.4490/algae.2017.32.3.3
  11. Kitade, Y., Asamizu, E., Fukuda, S., Nakajima, M., Ootsuka, S., Endo, H., Tabata, S. & Saga, N. 2008. Identification of genes preferemtially expressed during asexual sporulation in Porphyra yezoensis gametophytes (Bangiales, Rhodophyta). J. Phycol. 44:113-123.  https://doi.org/10.1111/j.1529-8817.2007.00456.x
  12. Kitakura, S., Adamowski, M., Matsuura, Y., Santuari, L., Kouno, H., Arima, K., Hardtke, C. S., Friml, J., Kakimoto, T. & Tanaka, H. 2017. BEN3/BIG2 ARF GEF is involved in brefeldin A-sensitive trafficking at the trans-Golgi network/early endosome in Arabidopsis thaliana. Plant Cell Physiol. 58:1801-1811. 
  13. Li, B. & Dewey, C. N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. 
  14. Li, W.-T., He, M., Wang, J. & Wang, Y.-P. 2013. Zinc finger protein (ZFP) in plants: a review. Plant Omics J. 6:474-480. 
  15. Li, X., Yang, L. & He, P.-M. 2011. Formation and growth of free-living conchosporangia of Porphyra yezoensis: effects of photoperiod, temperature and light intensity. Aquac. Res. 42:1079-1086.  https://doi.org/10.1111/j.1365-2109.2010.02691.x
  16. Livak, K. J. & Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408.  https://doi.org/10.1006/meth.2001.1262
  17. Lopez-Vivas, J. M., Riosmena-Rodriguez, R., de la Llave, A. A. J.-G., Pacheco-Ruiz, I. & Yarish, C. 2015. Growth and reproductive responses of the conchocelis phase of Pyropia hollenbergii (Bangiales, Rhodophyta) to light and temperature. J. Appl. Phycol. 27:1561-1570.  https://doi.org/10.1007/s10811-014-0434-z
  18. Love, M. I., Huber, W. & Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 
  19. Mizuta, H., Yasui, H. & Saga, N. 2003. A simple method to mass produce monospores in the thallus of Porphyra yezoensis Ueda. J. Appl. Phycol. 15:351-353.  https://doi.org/10.1023/A:1025170010916
  20. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11:1650-1667.  https://doi.org/10.1038/nprot.2016.095
  21. Provasoli, L. 1958. Nutrition and ecology of protozoa and algae. Annu. Rev. Microbiol. 12:279-308.  https://doi.org/10.1146/annurev.mi.12.100158.001431
  22. Sun, A. & Zeng, C. 1996. Preliminary report on suspension culture of clon of Porphyra yezoensis conchosporangial filaments in the production of conchospores for purple laver aquaculture. Oceanol. Limnol. Sin. 27:667-668. 
  23. Takagi, J. & Uemura, T. 2018. Use of brefeldin A and wortmannin to dissect post-Golgi organelles related to vacuolar transport in Arabidopsis thaliana. Methods Mol. Biol. 1789:155-165.  https://doi.org/10.1007/978-1-4939-7856-4_12
  24. Takahashi, M. & Mikami, K. 2017. Oxidative stress promotes asexual reproduction and apogamy in the red seaweed Pyropia yezoensis. Front. Plant Sci. 8:62. 
  25. Udawat, P., Jha, R. K., Sinha, D., Mishra, A. & Jha, B. 2016. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants. Front. Plant Sci. 7:518. 
  26. Wang, D., Yu, X., Xu, K., Bi, G., Cao, M., Zelzion, E., Fu, C., Sun, P., Liu, Y., Kong, F., Du, G., Tang, X., Yang, R., Wang, J., Tang, L., Wang, L., Zhao, Y., Ge, Y., Zhuang, Y., Mo, Z., Chen, Y., Gao, T., Guan, X., Chen, R., Qu, W., Sun, B., Bhattacharya, D. & Mao, Y. 2020a. Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment. Nat. Commun. 11:4028. 
  27. Wang, X., He, L., Ma, Y., Huan, L., Wang, Y., Xia, B. & Wang, G. 2020b. Economically important red algae resources along the Chinese coast: history, status, and prospects for their utilization. Algal Res. 46:101817. 
  28. Wi, J., Na, Y., Yang, E., Lee, J.-H., Jeong, W.-J. & Choi, D.-W. 2020. Arabidopsis AtMPV17, a homolog of mice MPV17, enhances osmotic stress tolerance. Physiol. Mol. Biol. Plants 26:1341-1348.  https://doi.org/10.1007/s12298-020-00834-x
  29. Xu, F., Zhang, D.-W., Zhu, F., Tang, H., Lv, X., Cheng, J., Xie, H.-F. & Lin, H.-H. 2012. A novel role for cyanide in the control of cucumber (Cucumis sativus L.) seedlings response to environmental stress. Plant Cell Environ. 35:1983-1997.  https://doi.org/10.1111/j.1365-3040.2012.02531.x
  30. Yang, L. & He, P. 2004. Effect of temperature, light intensity and conchosporangium density on conchospores releasing in Porphyra yezoensis. Mar. Fish. 26:205-209.