DOI QR코드

DOI QR Code

좁은가슴잎벌레의 발육과 생식에 미치는 온도의 영향

Effects of Temperature on the Development and Reproduction of Phaedon brassicae Baly (Coleoptera: Chrysomelidae)

  • 안정준 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 김광호 (농촌진흥청 기획조정관실 고객지원담당) ;
  • 박홍현 (농촌진흥청 국립농업과학원 농산물안정성부 작물보호과) ;
  • 이관석 (농촌진흥청 국립농업과학원 농산물안정성부 작물보호과) ;
  • 김정환 (농촌진흥청 국립농업과학원 농산물안정성부 작물보호과) ;
  • 정인홍 (농촌진흥청 국립농업과학원 농산물안정성부 작물보호과)
  • Jeong Joon Ahn (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal science, Rural Development Administration) ;
  • Kwang Ho Kim (Client Service Division, Rural Development Administration (RDA)) ;
  • Hong Hyun Park (Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, RDA) ;
  • Gwan Seok Lee (Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, RDA) ;
  • Jeong Hwan Kim (Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, RDA) ;
  • In-Hong Jeong (Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, RDA)
  • 투고 : 2023.06.09
  • 심사 : 2023.11.21
  • 발행 : 2023.12.01

초록

좁은가슴잎벌레는 십자화과작물을 가해하는 해충으로 알려져 있다. 본 연구는 온도가 좁은가슴잎벌레의 발육단계별 발육기간, 성충의 수명과 산란특성에 미치는 영향을 파악하고자 성충 전 발육단계는 15, 20, 25, 27.5℃에서, 성충은 10, 15, 20, 25, 27.5℃ 항온조건에서 조사하였다. 알과 유충은 항온조건에서 다음 발육 단계로 성공적으로 발육하였다. 알, 유충, 번데기의 발육기간은 온도가 상승할수록 짧아지는 경향을 보였다. 좁은가슴잎벌레의 발육영점온도, 유효적산온일도는 선형회귀분석을 통해 추정하였으며 알에서 성충출현까지 발육영점온도와 유효적산온일도는 8.7℃와 344.73DD였다. 좁은가슴잎벌레 발육단계별 최저, 최고 온도의 한계는 Briere함수를 이용하여 추정하였으며 알에서 성충출현까지 최저, 최고한계는 5.3℃와 40.4℃였다. 성충은 10℃와 27.5℃ 범위에서 산란이 가능하였고 21.7℃에서 최대 약 627.5개의 알을 낳는 것으로 추정되었다. 노화율, 나이별 생존율, 나이별 누적산란율, 온도의존 산란수와 관련된 성충모델들을 작성하였다. 본 연구에서 제시한 온도발육모형과 성충산란모형은 좁은가슴잎벌레 개체군동태를 이해하는데 유용할 것이며 십자화과작물의 종합적 해충군관리체계를 마련하는데 기초자료로 활용될것으로 기대된다.

The brassica leaf beetle, Phaedon brassicae Baly (Coleoptera: Chrysomelidae), is one of the important pests infesting cruciferous vegetables. In order to understand the biological characteristics of the insect, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of P. brassicae at four constant temperatures of 15, 20, 25 and 27.5℃ for immature life stage and five constant different temperatures of 10, 15, 20, 25 and 27.5℃ for adult stage. Eggs and larvae successfully developed next life stage at temperature tested. The development period of egg, larva, and pupa decreased as temperature increased. Lower developmental threshold (LDT) and thermal constant (K) were calculated using linear regression as 8.7℃ and 344.73DD, respectively. Lower and higher threshold temperature (TL and TH) from egg to adult emergence were estimated by Briere function as 5.3℃ and 40.4℃, respectively. Adults produced eggs at the temperature range between 10℃ and 27.5℃, and showed an estimated maximum number, ca. 627.5 eggs at 21.7℃. Adult oviposition models including aging rate, age-specific survival rate, age-specific cumulative oviposition, and temperature-dependent fecundity were constructed. Temperature-dependent development models and adult oviposition models would be useful components to understand the population dynamics of P. brassicae and to establish the strategy of integrated pest management in cruciferous crops.

키워드

과제정보

본 연구는 농촌진흥청 연구과제(과제번호RS-2021-RD009979)을 수행하는 과정에서 얻은 결과를 바탕으로 작성되었습니다.

참고문헌

  1. Ahn, J.J., Choi, K.S., Koh, S., 2019. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54, 63-74. https://doi.org/10.1007/s13355-018-0593-5
  2. Ahn, J.J., Kim, E.Y., Seo, B.Y., Jung, J.K., 2022a. Effects of temperature on the development and reproduction of Matsumuraese falcana (Lepidoptera: Tortricidae). Korean J. Appl. Entomol. 61, 435-447.
  3. Ahn, J.J., Kim, E.Y., Seo, B.Y., Jung, J.K., 2022b. Effects of temperature on the development and reproduction of Matsumuraese phaseoli (Lepidoptera: Tortricidae). Korean J. Appl. Entomol. 61, 461-473.
  4. Ahn, J.J., Kim, E.Y., Seo, B.Y., Jung, J.K., 2022c. Effects of temperature on the development and reproduction of Ostrinia scapulalis (Lepidoptera: Crambidae). Korean J. Appl. Entomol. 61, 577-590.
  5. Ahn, J.J., Kim, E.Y., Seo, B.Y., Jung, J.K., Lee, S-W., 2022d. Effects of temperature on the development and fecundity of Maruca vitrata (Lepidoptera: Crambidae). Korean J. Appl. Entomol. 61, 563-575.
  6. Briere, J.F., Pracros, P., Le Roux, L.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29. https://doi.org/10.1093/ee/28.1.22
  7. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438. https://doi.org/10.2307/2402197
  8. Choi, D-S., Ko, S-J., Ma, K-C., Kim, D-I., Kim, H-W., 2015. Development periods and damage of Chinese cabbage (Brassica campestris) by Phaedon brassicae (Coleoptera: Chrysomelidae). Kor. J. Soil Zool. 19, 57-62.
  9. EPPO, 2010. Mini data sheet on Phaedon brassicae, Paris.
  10. Hoffmann, K.H., 1985. Metabolic and enzyme adaptation to temperature, in: Hoffmann, K.H. (Ed.), Environmental physiology and biochemistry of insects. Springer, Berlin, Heidelberg, pp. 1-32.
  11. Karimi-Malati, A., Fathipour, Y., Talebi, A.A., 2014. Development response of Spodoptera exigua to eight constant temperatures: linear and nonlinear modelling. J. Asia Pacific Entomol. 17, 349-354. https://doi.org/10.1016/j.aspen.2014.03.002
  12. Kim, D-S., Ahn, J.J., Lee, J-H., 2017. A review for non-linear models describing temperature-dependent development of insect populations: characteristics and developmental process of models. Korean J. Appl. Entomol. 56, 1-18. https://doi.org/10.5656/KSAE.2016.11.0.061
  13. Pinder III, J.E., Wiener, J.G., Smith, M.H., 1978. The Weibull distribution: a new method of summarizing survivorship data. Ecology 59, 175-179. https://doi.org/10.2307/1936645
  14. Ratte, H.T., 1985. Temperature and insect development, in: Hoffmann, K.H. (Ed.), Environmental physiology and biochemistry of insects. Springer, Berlin, Heidelberg, pp. 33-66.
  15. RDA, 2015, Annual report of National Institute of Agricultural Sciences, Jeonju.
  16. SAS Institute, 2004. SAS system for window, release 8.02, Cary, NC.
  17. Schowalter, T.D., 2011. Insect ecology: An ecosystem approach, 3rd ed., Academic Press, CA.
  18. SYSTAT, 1996. TableCurve 2D: user's manual for windows, SYSTAT, Inc., CA.
  19. Wagner, T.L., Wu, H.I., Sharpe, P.J.H., Schoolfield, R.M., Coulson, B.N., 1984. Modeling insect development rates: a literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-225. https://doi.org/10.1093/aesa/77.2.208
  20. Wang, X., Zhou, X., Lei, C., 2007a. Development, survival and reproduction of the Brassica leaf beetle, Phaedon brassicae Baly (Coleoptera: Chrysomelidae) under different thermal conditions. Pan-Pac. Entomol. 83, 143-151. https://doi.org/10.3956/0031-0603-83.2.143
  21. Wang, X-P., Xue, F-S., Tan, Y-Q., Lei, C-L., 2007b. The role of temperature and photoperiod in diapause induction in the brassica leaf beetle, Phaedon brassicae (Coleoptera: Chrysomelidae). Eur. J. Entomol. 104, 693-697. https://doi.org/10.14411/eje.2007.087
  22. Weibull, W., 1951. A statistical distribution functions with wide applicability. J. Appl. Mech. 18, 293-297. https://doi.org/10.1115/1.4010337