Acknowledgement
Funding was provided by the Cooperative Research Program for Agriculture Science & Technology Development (project no. RS02022-RD010417), Rural Development Administration, Republic of Korea.
References
- Abbott, W.S., 1925. A Method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267. https://doi.org/10.1093/jee/18.2.265a
- Angioni, A., Dedola, F., Minelli, E.V., Barra, A., Cabras, P., Caboni, P., 2005. Residues and half-life times of pyrethrins on peaches after field treatments. J. Agric. Food Chem. 53, 4059-4063. https://doi.org/10.1021/jf0477999
- Antonious, G.F., Snyder, J.C., Patel, G.A., 2001. Pyrethrins and piperonyl butoxide residues on potato leaves and in soil under field conditions. J. Environ. Sci. Health B 36, 261-271. https://doi.org/10.1081/PFC-100103568
- Bass, C., Puinean, A.M., Zimmer, C.T., Denholm, I., Field, L.M., Foster, S.P., Gutbrod, O., Nauen, R., Slater, R., Williamson, M.S., 2014. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 51, 41-51. https://doi.org/10.1016/j.ibmb.2014.05.003
- Capinera, J.L., 2001. Green peach aphid, Myzus persicae (Sulzer) (Insecta: Hemiptera: Aphididae). in: Capinera J.L. (Ed.) Encyclopedia of Entomology. Springer, Dordrecht.
- Casida, J.E., Durkin, K.A., 2013. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Ann. Rev. Entomol. 58, 99-117. https://doi.org/10.1146/annurev-ento-120811-153645
- Casida, J.E., Quistad, G.B., 1998. Golden age of insecticide research: past, present, or future? Annu. Rev. Entomol. 43, 1-16. https://doi.org/10.1146/annurev.ento.43.1.1
- Chen, M., Du, Y., Zhu, G., Takamatsu, G., Ihara, M., Matsuda, K., Zhorov, B.S., Dong, K., 2018. Action of six pyrethrins purified from the botanical insecticide pyrethrum on cockroach sodium channels expressed in Xenopus oocytes. Pestic. Biochem. Physiol. 151, 82-89. https://doi.org/10.1016/j.pestbp.2018.05.002
- Cho, K.H., Kim, H.J., Kim, Y.C., 2023. An optimal standardized in vitro bioassay to evaluate susceptibility of green peach aphid, Myzus persicae (Sulzer)(Insecta: Hemoptera: Aphididae), to aphicides. Korean J. Appl. Entomol. 63, 139-147.
- Finney, D.J., Stevens, W.L., 1948. A table for the calculation of working probits and weights in probit analysis. Biometrika 35, 191-201. https://doi.org/10.1093/biomet/35.1-2.191
- Grdisa, M., Jeran, N., Varga, F., Klepo, T., Ninčević, T., Satović, Z., 2022. Accumulation patterns of six pyrethrin compounds across the flower developmental stages-Comparative analysis in six natural dalmatian pyrethrum populations. Agronomy 12, 252.
- Haller, H.L., Goodhue, L.D., Jones, H.A., 1942. The constituents of derris and other rotenone-bearing plants. Chem. Rev. 30, 33-48. https://doi.org/10.1021/cr60095a002
- He, X., Fang, J., Huang, L., Wang, J., Huang, X., 2015. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 172, 10-29. https://doi.org/10.1016/j.jep.2015.06.010
- Ingram, E.M., Augustin, J., Ellis, M.D., Siegfried, B.D., 2015. Evaluating sub-lethal effects of orchard-applied pyrethroids using video-tracking software to quantify honey bee behaviors. Chemosphere 135, 272-277. https://doi.org/10.1016/j.chemosphere.2015.04.022
- Isman, M.B., 2005. Problems and opportunities for the commercialization of botanical insecticides, in: Regnault-Roger, C., Philogene, B.J.R., Vincent, C., (Eds.), Biopesticides of plant origin. Lavoisier Publishing, Paris, pp. 283-291.
- Isman, M.B., 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 51, 45-66. https://doi.org/10.1146/annurev.ento.51.110104.151146
- Johnson, R.M., Wen, Z., Schuler, M.A., Berenbaum, M.R., 2006. Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases. J. Econ. Entomol. 99, 1046-1050. https://doi.org/10.1093/jee/99.4.1046
- Kim, D.S., 2021. A review on the insecticidal activity of neem extracts (Azadirachtin) and its corrent status of practical use in Korea. Korean J. Appl. Entomol. 60, 463-471 (Korean)
- Krumholz, L.A., 1948. The use of rotenone in fisheries research. J. Wildl. 12, 305-317.
- Lawrence, J.M., 1956. Preliminary results on the use of potassium permanganate to counteract the effects of rotenone on fish. Prog. Fish C. 18, 15-21. https://doi.org/10.1577/1548-8659(1956)18[15:PROTUO]2.0.CO;2
- Lengai, G.M.W., Muthomi, J.W., Mbega, E.R., 2020. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 7, e00239.
- Li, X., Wang, C., Li, Q., Zhu, S., Tian, X., Zhang, Y., Li, X., Gao, H., Liu, E., Wang, L., Zhu, X., 2021. Field-evolved Sulfoxaflor resistance of three wheat aphid species in China. Agronomy 11, 2325.
- Melo, K.M., Oliveira, R., Grisolia, C.K., Domingues, I., Pieczarka, J.C., de Souza Filho, J., Nagamachi, C.Y., 2015. Short-term exposure to low doses of rotenone induces developmental, biochemical, behavioral, and histological changes in fish. Environ. Sci. Pollut. Res. Int. 22, 13926-13938. https://doi.org/10.1007/s11356-015-4596-2
- Casida, J.E., Quistad, B., 1995. Pyrethrum flowers. production, chemistry, toxicology, and uses. 1st Ed., Oxford University Press, New York.
- Ng, J.C., Perry, K.L., 2004. Transmission of plant viruses by aphid vectors. Mol Plant Pathol. 5, 505-511. https://doi.org/10.1111/j.1364-3703.2004.00240.x
- Pavela, R., 2016. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects-a review. Plant Prot. Sci. 52, 229-241. https://doi.org/10.17221/31/2016-PPS
- Rattan, R.S., 2010. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 29, 913-920. https://doi.org/10.1016/j.cropro.2010.05.008
- Rattanapan, A., 2009. Effects of rotenone from derris crude extract on esterase enzyme mechanism in the beet armyworm, Spodoptera exiqua (Hubner). Commun. Agric. Appl. Biol. Sci. 74, 437-444.
- Robertson, D.R., Smith-Vaniz, W.F., 2008. Rotenone: an essential but demonized tool for assessing marine fish diversity. BioScience 58, 165-170. https://doi.org/10.1641/B580211
- Silva, A.X., Bacigalupe, L.D., Luna-Rudloff, M., Figueroa, C.C., 2012. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) II: Costs and benefits. PLOS ONE 7, e36810.
- Soderlund, D.M., 2012. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch. Toxicol. 86, 165-181. https://doi.org/10.1007/s00204-011-0726-x
- Sparks, T.C., Watson, G.B., Loso, M.R., Geng, C., Babcock, J.M., Thomas, J.D., 2013. Sulfoxaflor and the sulfoximine insecticides: Chemistry, mode of action and basis for efficacy on resistant insects. Pestic. Biochem. Phys. 107, 1-7. https://doi.org/10.1016/j.pestbp.2013.05.014
- Wauchope, R.D., Butler, T.M., Hornsby, P.M., Augustin-Beckers, P.M., Burt, J.P. 1992. The SCS/ARS/CES pesticide properties database for environmental decision making. Rev. Environ. Contam. Toxicol. 123, 1-155.
- Wu, J., Yu, X., Wang, X., Tang, L., Ali, S., 2019. Matrine enhances the pathogenicity of Beauveria brongniartii against Spodoptera litura (Lepidoptera: Noctuidae). Front. Microbiol. 10, 1812.
- Xiong, X., Yao, M., Fu, L., Ma, Z.-q., Zhang, X., 2016. The botanical pesticide derived from Sophora flavescens for controlling insect pests can also improve growth and development of tomato plants. Indus. Crops and Prod. 92, 13-18. https://doi.org/10.1016/j.indcrop.2016.07.043