DOI QR코드

DOI QR Code

Influence of Blending Method on the Generation of Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Sanghoon Song (School of Chemical Engineering, Pusan National University) ;
  • Junhwan Jeong (School of Chemical Engineering, Pusan National University) ;
  • Jin Uk Ha (Advanced Materials R&D Department, Korea Automotive Technology Institute) ;
  • Daedong Park (Advanced Materials R&D Department, Korea Automotive Technology Institute) ;
  • Gyeongchan Ryu (School of Chemical Engineering, Pusan National University) ;
  • Donghyuk Kim (School of Chemical Engineering, Pusan National University) ;
  • Kiwon Hwang (Hankook Tire & Technology Co., Ltd R&D Center) ;
  • Sungwook Chung (School of Chemical Engineering, Pusan National University) ;
  • Wonho Kim (School of Chemical Engineering, Pusan National University)
  • Received : 2023.10.15
  • Accepted : 2023.11.09
  • Published : 2023.12.31

Abstract

Because particulate matter has emerged as a major contributor to air pollution, the tire industry has conducted studies to reduce particulate matters from tires by improving tire performance. In this study, we compared the conventional blending method, in which rubber, filler, and additives are mixed simultaneously, to the Y-blending method, in which masterbatches are blended. We manufactured carbon black (CB)-filled natural rubber (NR)/butadiene rubber (BR) blend and silica-filled epoxidized NR/BR blend compounds to compare the effects of the two blending methods on the physical properties of the compounds and the amount of particulate matter generated. The Y-blending method provided uniform filler distribution in the heterogeneous rubber matrix, improved processability, and exhibited low rolling resistance. This method also improved physical properties owing to the excellent filler-rubber interaction. The results obtained from measuring the generation of particulate matter indicated that, the Y-blending method reduced PM2.5 particulate matter generation from the CB-filled and silica-filled compounds by 38% and 60%, and that of PM10 by 29% and 67%, respectively. This confirmed the excellence of the Y-blending method regarding the physical properties of truck bus radial tire tread compounds and reduced particulate matter generated.

Keywords

Acknowledgement

This research was supported by the Ministry of Trade, Industry, and Energy Grant funded by the Korean Government [Project Number 20003901]. This research was supported by the The Rubber Society of Korea Scholarship in 2021.

References

  1. H. A. D. van der Gon, M. E. Gerlofs-Nijland, R. Gehrig, M. Gustafsson, N. Janssen, R. M. Harrison, J. Hulskotte, C. Johansson, M. Jozwicka, M. Keuken, K. Krijgsheld, L. Ntziachristos, M. Riediker, and F. R. Cassee, "The policy relevance of wear emissions from road transport, now and in the future-an international workshop report and consensus statement", J. Air Waste Manag. Assoc., 63, 136 (2012).
  2. S. H. Woo, H. Jang, S. B. Lee, and S. Lee, "Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: An experimental analysis", Sci. Total Environ., 842, 156961 (2022).
  3. Organization for Economic Co-operation and Development, "Non-exhaust particulate emissions from road transport: An ignored environmental policy challenge", OECD Publishing, Paris, https://doi.org/10.1787/4a4dc6ca-en (2020).
  4. F. Biesse, "A dive into the tire road wear particles" In: Proceedings of the Tire Technology Expo 2023, Hannover, Germany, 21-23 March (2023).
  5. G. Ryu, D. Kim, S. Song, H. H. Lee, J. U. Ha, and W. Kim, "Wear particulate matters and physical properties of ENR/BR tread compounds with different ratio of silica and carbon black binary filler systems", Elast. and Compos., 56, 234 (2021). https://doi.org/10.7473/EC.2021.56.4.234
  6. G. Ryu, D. Kim, S. Song, H. H. Lee, J. U. Ha, and W. Kim, "Wear particulate matters and physical properties of silica filled ENR/BR tread compounds according to the BR contents", Elast. and Compos., 56, 243 (2021).
  7. J. W. Lee, C. B. Chung, and I. C. Choi, "Severity factors affecting tire wear" Polymer(Korea), 29, 48 (2005).
  8. S. C. Han, S. J. Choe, and M. H. Han, "Compounding technology of silica-filled rubber", Rubber Technol., 2, 100 (2001).
  9. I. J. Kim, D. Kim, B. Ahn, H. J. Lee, H. J. Kim, and W. Kim, "Vulcanizate structures of NR compounds with silica and carbon black binary filler systems at different curing temperatures", Elast. and Compos., 56, 20 (2021).
  10. M. Adamiak, "Abrasion resistance of materials", IntechOpen: London, United Kingdom (2012).
  11. S. Ahmad and R. J. Schaefer, "Energy saving tire with silica-rich tread", U.S. patent 4,519,430 (1985).
  12. E. M. Cichomski, "Silica-silane reinforced passenger car tire treads", Ph.D. Thesis, University of Twente, Enschede, the Netherlands (2015).
  13. S. S. Sarkawi, W. K. Dierkes, and J. W. M. Noordermeer, "Morphology of silica-reinforced natural rubber: The effect of silane coupling agent", Rubber Chem. Technol., 88, 359 (2015).
  14. P. J. Martin, P. Brown, A. V. Chapman, and S. Cook, "Silica-reinforced epoxidized natural rubber tire treads-Performance and durability", Rubber Chem. Technol., 88, 390 (2015).
  15. W. Wunde and M. Kluppel, "Influence of phase morphology and filler distribution in NR/BR and NR/SBR blends on fracture mechanical properties", Rubber Chem. Technol., 89, 588 (2016).
  16. Q. Y. Han and Y. P. Wu, "Viscoelasticity and dynamic fatigue crack growth behavior of natural rubber/cis-polybutadiene rubber composites", Rubber Chem. Technol., 95, 635 (2022).
  17. W. Kim, B. Ahn, H. Mun, E. Yu, K. Hwang, and W. Kim, "Evaluation of BR blending methods for ESBR/silica wet masterbatch compounds", Elast. and Compos., 52, 242 (2017).
  18. J. Ramier, C. Gauthier, L. Chazeau, L. Stelandre, and L. Guy, "Payne effect in silica-filled styrene-butadiene rubber: influence of surface treatment", J. Polym. Sci. B: Polym. Phys., 45, 286 (2007).
  19. S. Song, G. Yeom, D. Kim, G. Ryu, K. Hwang, B. Ahn, H. Choi, H. J. Paik, S. Chung, and W. Kim, "Effects of the diamine chain end functionalized liquid butadiene rubber as a processing aid on the properties of carbon-black-filled rubber compounds", Polymers, 14, 3343 (2022).
  20. P. Rooshenass, R. Yahya, and S. N. Gan, "Preparation of liquid epoxidized natural rubber by oxidative degradations using periodic acid, potassium permanganate and UV-irradiation", J. Polym. Environ., 26, 1378 (2018).
  21. D. R. Burfield, K. L. Lim, K. S. Law, and S. Ng, "Analysis of epoxidized natural rubber. A comparative study of dsc, nmr, elemental analysis and direct titration methods", Polymer, 25, 995 (1984).
  22. N. B. Guerra, J. B. Cassel, N. A. C. Henckes, F. S. de Oliveira, E. O. Cirne-Lima, and L. A. L. dos Santos, "Chemical and in vitro characterization of epoxidized natural rubber blends for biomedical applications", J. Polym. Res., 25, 1 (2018).
  23. V. Tanrattanakul, B. Wattanathai, A. Tiangjunya, and P. Muhamud, "In situ epoxidized natural rubber: Improved oil resistance of natural rubber", J. Appl. Polym. Sci., 90, 261 (2003).
  24. S. S. Sarkawi, W. K. Dierkes, and J. W. Noordermeer, "Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM network visualization", Europ. Polym. J. 54, 118 (2014).
  25. W. M. Hess, C. E. Scott, and J. E. Callan, "Carbon black distribution in elastomer blends", Rubber Chem. Technol., 40, 371 (1967).
  26. S. S. Choi, I. S. Kim, and C. S. Woo, "Influence of TESPT content on crosslink types and rheological behaviors of natural rubber compounds reinforced with silica", J. Appl. Polym. Sci., 106, 2753 (2007).
  27. B. Seo, K. Kim, H. Lee, J. Y. Lee, G. H. Kwag, and W. Kim, "Effect of styrene-butadiene rubber with different macro-structures and functional groups on the dispersion of silica in the compounds", Macromo. Res., 23, 466 (2015).
  28. W. Kaewsakul, K. Sahakaro, W. K. Dierkes, and J. W. Noordermeer, "Cooperative effects of epoxide functional groups on natural rubber and silane coupling agents on reinforcing efficiency of silica", Rubber Chem. Technol., 87, 291 (2014).
  29. T. Z. Zaeimoedin and J. Clarke, "Improving the abrasion resistance of "Green" tyre compounds", Journal of Energy and Power Engineering, 11, 637 (2017).
  30. N. Tabsan, S. Wirasate, and K. Suchiva, "Abrasion behavior of layered silicate reinforced natural rubber", Wear, 269, 394 (2010).
  31. M. J. Wang, "Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates", Rubber Chem. Technol., 71, 520 (1998).
  32. N. Vleugels, W. Pille-Wolf, W. K. Dierkes, and J. W. M. Noordermeer, "Understanding the influence of oligomeric resins on traction and rolling resistance of silica-reinforced tire treads", Rubber Chem. Technol., 88, 65 (2015).
  33. K. Hwang, S. Song, Y. Y. Kang, J. Suh, H. B. Jeon, G. Kwag, H. J. Paik, and W. Kim, "Effect of emulsion SBR prepared by asymmetric reversible addition-fragmentation transfer agent on properties of silica-filled compounds", Rubber Chem. Technol., 94, 735 (2021).
  34. D. Kim, B. Ahn, K. Kim, J. Y. Lee, I. J. Kim, and W. Kim, "Effects of molecular weight of functionalized liquid butadiene rubber as a processing aid on the properties of SSBR/silica compounds", Polymers, 13, 850 (2021).
  35. M. J. Wang, Y. Kutsovsky, P. Zhang, L. J. Murphy, S. Laube, and K. Mahmud, "New generation carbon-silica dual phase filler part I. Characterization and application to passenger tire", Rubber Chem. Technol., 75, 247 (2002).
  36. M. J. Wang, P. Zhang, and K. Mahmud, "Carbon-silica dual phase filler, a new generation reinforcing agent for rubber: Part IX. Application to truck tire tread compound", Rubber Chem. Technol., 74, 124 (2001).
  37. S. H. Woo, H. Jang, S. H. Mun, Y. Lim, and S. Lee, "Effect of treadwear grade on the generation of tire PM emissions in laboratory and real-world driving conditions", Sci. Total Environ., 838, 156548 (2022).