DOI QR코드

DOI QR Code

Unrecorded Fungi Isolated from Fire Blight-controlled Apple Orchard Soil in Korea

  • Soo Young Chi (Department of Microbiology, College of Science and Technology, Dankook University) ;
  • Jun Woo Cho (Department of Microbiology, College of Science and Technology, Dankook University) ;
  • Hyeongjin Noh (Department of Microbiology, College of Science and Technology, Dankook University) ;
  • Minseok Kim (Department of Microbiology, College of Science and Technology, Dankook University) ;
  • Ye Eun Kim (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Seong Hwan Kim (Department of Microbiology, College of Science and Technology, Dankook University)
  • 투고 : 2023.11.14
  • 심사 : 2023.12.26
  • 발행 : 2023.12.31

초록

To explore fungal diversity in orchard soil where fire-blighted apple trees are buried, we collected soil samples from apple orchards in Chungju, Korea. Fungal isolates were obtained from DG18 agar and identified at the species level based on morphological features and phylogenetic analyses. The colony characteristics and microstructures were examined using a light microscope and a scanning electron microscope after culturing on potato dextrose agar (PDA), malt extract agar (MEA), Czapek yeast agar (CYA), and oatmeal agar (OA) The PCR-amplified products of the ITS1-5.8S-ITS2 region and 28S large subunit of the nuclear ribosomal RNA gene, as well as partial sequences of the β-tubulin, calmodulin, and translation elongation factor 1-α genes were sequenced and analyzed phylogenetically. Seven previously unknown fungal species were explored in Korea. All samples, including Aspergillus aureolatus, Botryotrichum atrogriseum, Dactylonectria novozelandica, Fusarium denticulatum, Paecilomyces tabacinus, Sarcopodium tibetense and Talaromyces stollii, had ascomycetes. Herein, we report their descriptions and features.

키워드

과제정보

This work was supported by grants from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE), and by the Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ016242); RDA, and the Animal and Plant Quarantine Agency, Republic of Korea.

참고문헌

  1. Choi DW, Kim DC, Lim CR. Analysis of factors influencing cultivation area of apple cultivars. J Kor Soc of Rural Plan 2018;24:25-31. https://doi.org/10.7851/ksrp.2018.24.3.025
  2. Myung IS, Lee JY, Yun MJ, Lee YH, Lee YK, Park DH, Oh CS. Fire blight of apple, caused by Erwinia amylovora, a new disease in Korea. Plant Dis 2016;100:1774.
  3. Kim YE, Kim JY, Noh HJ, Lee DH, Kim SS, Kim SH. Investigating survival of Erwinia amylovora from fire blight-diseased apple and pear trees buried in soil as control measure. Korean J Environ Agri 2019;38:269-72. https://doi.org/10.5338/KJEA.2019.38.4.36
  4. Schmidt R, Mitchell J, Scow K. Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol Biochem 2019;129:99-109. https://doi.org/10.1016/j.soilbio.2018.11.010
  5. Yun YH, Hyun MW, Suh DY, Kim SH. Characterization of a sapstaining fungus, Ophiostoma floccosum, isolated from the sapwood of Pinus thunbergii in Korea. Mycobiology 2009;37:5-9. https://doi.org/10.4489/MYCO.2009.37.1.005
  6. White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand D, Sninsky JJ, editors. PCR Protocols: A Guide to Methods and Applications. Cambridge: Academic Press; 1990. p. 315-22.
  7. Cubeta MA, Echandi E, Abernethy T, Vilgalys R. Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 1991;81:1395-400. https://doi.org/10.1094/Phyto-81-1395
  8. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990;172:4238-46. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  9. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61:1323-30. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  10. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999;91:553-6. https://doi.org/10.1080/00275514.1999.12061051
  11. Stepien L, Koczyk G, Waskiewicz A. FUM cluster divergence in fumonisins-producing Fusarium species. Fungal Biol 2011;115:112-23. https://doi.org/10.1016/j.funbio.2010.10.011
  12. O'Donnell K, Nirenberg HI, Aoki T, Cigelnik E. A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 2000;41:61-78. https://doi.org/10.1007/BF02464387
  13. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673-80. https://doi.org/10.1093/nar/22.22.4673
  14. Tamura K, Steche G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021;38:3022-7. https://doi.org/10.1093/molbev/msab120
  15. Cho A. Constructing phylogenetic trees using maximum likelihood. Scripps Senior Theses 2012;2012:46.
  16. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111-20. https://doi.org/10.1007/BF01731581
  17. Muntanola-Cvetkovic M, Bacta J. Some species of Aspergillus from Yugoslavia. I. Bulletin de IInstitut et du Jardin Botaniques de IUniversite de Beograd 1964;9:181-212.
  18. Beyma TK, Van JFH. Mykologische untersuchungen. Verhandelingen Koninklijke Nederlandse Akademie van Wetenschappen Afdeling Natuurkunde 1929;26:1-29.
  19. El-Eraky AMI, Moubasher AH, Ismail MA, El-Shaer AH, Gouda HA. Mycosynthesis of silver nanoparticles and their role in the control of Fusarium wilt of pepper. J Basic Appl Mycol 2017;8:25-34.
  20. Cabral A, Rego C, Nascimento T, Oliveira H, Groenewald JZ, Crous PW. Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biol 2012;116:62-80. https://doi.org/10.1016/j.funbio.2011.09.010
  21. Vigliecca M, Gonzalez P, Machin A, Vicente E, Silvera-Perez E. First report of root and crown rot caused by Dactylonectria novozelandica on strawberry in Uruguay. Agrociencia Uruguay 2022;26:962.
  22. Nirenberg HI, O'Donnell K. New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 1998;90:434-58. https://doi.org/10.1080/00275514.1998.12026929
  23. Gao B, Ma J, Li X, Chen S, Wang R. First report of Fusarium denticulatum causing chlorotic leaf distortion of sweet potato in China. Plant Dis 2023;107:2579-897. https://doi.org/10.1094/PDIS-03-23-0535-PDN
  24. Crous PW, Wingfield MJ, Richardson DM, Leroux JJ, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PWJ, Heykoop M, et al. Fungal planet description sheets: 400-468. Persoonia 2016;36:316-458. https://doi.org/10.3767/003158516X692185
  25. Zeng ZQ, Zhuang WY. A new species of Sarcopodium (Hypocreales, Nectriaceae) from China. Phytotaxa 2021;491:65-71. https://doi.org/10.11646/phytotaxa.491.1.7
  26. Yilmaz N, Houbraken J, Hoekstra ES, Frisvad JC, Visagie CM, Samson RA. Delimitation and characterisation of Talaromyces purpurogenus and related species. Persoonia 2012;29:39-54. https://doi.org/10.3767/003158512X659500
  27. Barral B, Chillet M, Doizy A, Grassi M, Ragot L, Lechaudel M, Durand N, Rose LJ, Viljoen A, Schorr-Galindo S. Diversity and toxigenicity of fungi that cause pineapple fruitlet core rot. Toxins 2020;12:339.