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RINGS IN WHICH EVERY SEMICENTRAL IDEMPOTENT IS

CENTRAL

Muhammad Saad

Abstract. The RIP of rings was introduced by Kwak and Lee as a generalization
of the one-sided idempotent-reflexivity property. In this study, we focus on rings
in which all one-sided semicentral idempotents are central, and we refer to them
as quasi-Abelian rings, extending the concept introduced by RIP. We establish that
quasi-Abelianity extends to various types of rings, including polynomial rings, power
series rings, Laurent series rings, matrices, and certain subrings of triangular ma-
trix rings. Furthermore, we provide comprehensive proofs for several results that
hold for RIP and are also satisfied by the quasi-Abelian property. Additionally, we
investigate the structural properties of minimal non-Abelian quasi-Abelian rings.

1. Introduction

Throughout this note, all our rings are assumed to have identity unless indicated
otherwise. An idempotent e of a ring R is called left (resp. right) semicentral if
ae = eae (resp., ea = eae) for all a ∈ R. If an idempotent e is both left and right
semicentral, then e is central. For a ring R, we use I(R), Sl(R), Sr(R), and B(R)
to denote the set of all idempotents, left semicentral idempotents, right semicentral
idempotents, and central idempotents of R, respectively.

A ring R is called Abelian (resp. semi-Abelian) if every idempotent of R is central
(resp. left or right semicentral). Moreover, R is called central reduced (resp. semicen-
tral reduced) if it has no nontrivial central (resp. one-sided semicentral) idempotents
(see [2, 6, 7]).

Given a ring R, the polynomial ring with an indeterminate x over R, the power
series ring with an indeterminate x over R, the Laurent polynomial ring with an
indeterminate x over R, the Laurent power series ring with an indeterminate x over
R, the n-by-n full matrix ring over R, the n-by-n upper triangular matrix ring over
R are denoted respectively by R[x], R[[x]], R[x, x−1], R[[x, x−1]], Mn(R), and Tn(R).

Recall that a ring is reduced if it has no nonzero nilpotent elements and is called
directly finite if ba = 1 whenever ab = 1 for every a, b ∈ R. In [3], a ring R is called
2-primal if the prime radical of R coincides with the set of all nilpotent elements of
R. According to [19], a ring R is called NI if the upper nilradical of R coincides with
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the set of all nilpotent elements of R. Furthermore, it is worth noting that reduced
rings are Abelian, Abelian ring are directly finite, and 2-primal rings are NI.

In [12, 14, 15], a ring R is called reflexive if aRb = 0 implies bRa = 0 for any
a, b ∈ R, and is called right (resp. left) idempotent-reflexive if aRe = 0 (resp. eRa)
implies eRa = 0 (resp. aRe) for every a ∈ R and e ∈ I(R). If a ring is both left and
right idempotent-reflexive, then the ring is called idempotent-reflexive.

According to [16], a ring R is said to have the property of RIP if eRf = 0 implies
fRe = 0 for any e, f ∈ I(R). The RIP of rings is a generalization of the one-
sided idempotent reflexivity property. It is evident that every one-sided semicentral
idempotent in a ring with the RIP property is also central (as shown in [16, Proposition
2.10 (1)]). However, the converse is not necessarily true, as demonstrated in the
following example.

Example 1.1. Consider an Abelian ring D, and let S = D ⊕ D ⊕ D equipped
with componentwise addition and multiplication. We define the automorphism σ :
S → S as σ(x, y, z) = (y, z, x) for every (x, y, z) ∈ S. Now, consider the Na-
gata extension of S by S and σ, denoted as R. In the ring R, we have the idem-
potents e = ((0, 1, 0), (0, 0, 0)) and f = ((0, 0, 1), (0, 1, 1)). Although eRf = 0,
it is noteworthy that fRe = ((0, 0, 0), (0, D, 0)) 6= 0. Consequently, R does not
possess the RIP property. On the other hand, we observe that Sl(R) ∪ Sr(R) =
{((e, e, e), (0, 0, 0)) | e ∈ I(R)}, which constitutes a central subset of the ring R.

Motivated by the previous example, we now delve into introducing a concept in
this paper. This concept pertains to rings where the centrality of every semicentral
idempotent is extended, thus giving a generalization of RIP rings.

2. Quasi-Abelian rings

We initiate this section by introducing the following definition.

Definition 2.1. A ring R is said to be quasi-Abelian if every one-sided semicentral
idempotent of R is central; that is Sl(R) ∪ Sr(R) = B(R).

Evidently, both Abelian and semicentral reduced rings are contained in the class
of quasi-Abelian rings. However, it’s important to highlight that there exist quasi-
Abelian rings that are neither Abelian nor semicentral reduced.

Example 2.2. The ring R = M2(F ) of 2-by-2 matrices over some filed F is reflexive
by [15, Theorem 2.6(2)], and particularly is quasi-Abelian. However, R is not Abelian.
Furthermore, the ring R ⊕ R is quasi-Abelian but neither Abelian nor semicentral
reduced.

Here are two propositions with straightforward proofs that provide sufficient and
necessary conditions for a quasi-Abelian ring to be either Abelian or semicentral
reduced.

Proposition 2.3. A ring R is Abelian if and only if it is quasi-Abelian and semi-
Abelian.

Proposition 2.4. A ring R is semicentral reduced if and only if R is quasi-Abelian
and central reduced.
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Nevertheless, every RIP ring is quasi-Abelian. However, this implication does not
hold in the case of rings without identity, as exemplified by the non-unital rings[
Z2 Z2

0 0

]
and

[
Z2 0
Z2 0

]
(see [16, Example 4.4]).

The following proposition provides equivalent conditions for the quasi-Abelianity
property of rings.

Proposition 2.5. For a ring R, the following conditions are equivalent:

(i) R is quasi-Abelian.
(ii) For any a, b ∈ R such that ab ∈ Sl(R), we have aSl(R)b ⊆ Sl(R).
(iii) For any a, b ∈ R such that ab ∈ Sr(R), we have aSr(R)b ⊆ Sr(R).
(iv) For any a, b ∈ R such that ab ∈ Sl(R), we have aSl(R)b ⊆ I(R).
(v) For any a, b ∈ R such that ab ∈ Sr(R), we have aSr(R)b ⊆ I(R).

Proof. (i)⇒(ii) and (ii)⇒(iv) are straightforward.
(iv)⇒(i): Let f be a semicentral idempotent of R. If f is a left semicentral idempo-

tent, then for every idempotent e of R, we have ef(1−e), (1−e)fe ∈ I(R), given that
e(1−e) = (1−e)e = 0 ∈ Sl(R). Consequently, ef(1−e) = (1−e)fe = 0, and ef = fe.
Thus, it follows that f is central, as indicated in [10, Corollary 2]. On the other hand,
if f is a right semicentral idempotent, then e(1 − f)(1 − e), (1 − e)(1 − f)e ∈ I(R)
and ef = fe. Again, we can demonstrate that f is central.

To establish the equivalence between (i), (iii), (v), and (vii), a similar argument
can be applied as used in the proof of (i)⇔(ii)⇔(iv)⇔(vi).

In [16], Kwak and Lee raised the following question: ”If a ring R has the RIP
property, does Mn(R) have the RIP property for some n ≥ 2?” We will address this
question in the next proposition, but instead of RIP, we will consider the property of
quasi-Abelianity.

Theorem 2.6. For a ring R, the following conditions are equivalent.

(i) R is quasi-Abelian.
(ii) Mn(R) is quasi-Abelian, for every n ≥ 2.

(iii) Mn(R) is quasi-Abelian, for some n ≥ 2.

Proof. (i) ⇒ (ii): Let e =

[
e11 e12
e21 e22

]
be a left semicentral idempotent of M2(R).

For an arbitrary element r of R, consider the elements α =

[
r 0
0 0

]
and β =

[
0 r
0 0

]
in

M2(R). Since (1− e)αe = (1− e)βe = 0, we have (1− e11)Reij = 0 and e21Reij for all
i and j. So e11 ∈ Sl(R), and consequently, e11 is central due to the quasi-Abelianity
of R. Also, e21 = (1 − e11)e21 + e21e11 = 0. Similarly, one can show that e22 is a

central idempotent and e12 = 0. Now, (1 − e)
[
0 1
0 0

]
e = 0 gives us (1 − e22)e11 = 0,

and thus, e22 = e11. Therefore, e is a central idempotent.
Now, we will use induction on n to show that every left semicentral idempotent

of Mn(R) is a scalar matrix with central entries. We assume that every semicentral

idempotent of Mn(R) is a central scalar matrix. Let ε =

[
a u′

v f

]
be a left semicentral

idempotent of Mn+1(R), where a ∈ Mn(R), f ∈ R, and u, v ∈ Rn. We should note
that Rn is the (Mn(R), R)-bimodule consisting of n-tuples of components from R with
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unity denoted as 1n and the notation v′ indicates the transpose of vector v. Consider

the elements

[
m 0
0 0

]
and

[
0 0
0 r

]
for arbitrary m ∈ Mn(R) and r ∈ R. Applying the

left semicentrality of ε to these elements, we find that a ∈ Sl(Mn(R)) and f ∈ Sl(R).
From the assumptions, a is a central idempotent scalar matrix of Mn(R) and f ∈ B(R).

From (1 − ε)
[
0 1′n
0 0

]
ε = (1 − ε)

[
0 0
1n 0

]
ε = 0, we get a = fIn, where In represents

the identity matrix of Mn(R). Applying the left semicentrality of ε on the elements[
0 0
0 1

]
and

[
In 0
0 0

]
, we get u = v = 0. Therefore ε is a scalar central idempotent

matrix, and Mn+1(R) is quasi-Abelian.
(ii) ⇒ (iii) is a direct implication.
(iii) ⇒ (i): If e ∈ Sl(R), then eIn ∈ Sl(Mn(R)), and as a result, eIn is central.

Therefore, e ∈ B(R), and this implies that R is quasi-Abelian.

Indeed, the class of quasi-Abelian rings is not closed under subrings, as exempli-
fied by the ring M2(F ), which is quasi-Abelian, whereas its subring T2(F ) is not

quasi-Abelian. This is evidenced by the element

[
1 1
0 0

]
, which is a left semicentral

idempotent but not central in T2(F ).
In addition, the class of quasi-Abelian rings is not closed under homomorphic im-

ages. However, it is worth noting that there exist nontrivial homomorphic images of
quasi-Abelian rings that are also quasi-Abelian.

Example 2.7. (i) Let F be a field and R = F 〈a, b〉 be the free algebra with
noncommuting indeterminates a and b over F . Then, R is reduced and so quasi-
Abelian. Let I be the ideal of R generated by arb, a − a2, ra − ara, for every
r ∈ R. Then a ∈ Sl(R/I), but ar − ara 6∈ I, for some r ∈ R and a 6∈ Sr(R/I).
Thus R/I is not quasi-Abelian.

(ii) The ring R = Tn(F ), for some filed F , is not quasi-Abelian for any n ≥ 2.
Although, the ring e11Re11 ∼= F is quasi-Abelian.

(iii) Let R = H(Z) be the ring of quaternions with integer coefficients. R is a
domain, and therefore it is quasi-Abelian. Furthermore, as stated in [9, Exercise
2A], R/pR ∼= Mn(Zp), which is a prime ring and hence semicentral reduced.
Consequently, R/pR is also quasi-Abelian.

Here, we provide a sufficient condition for an ideal I to make a ring R quasi-Abelian,
given that R/I is also quasi-Abelian.

Proposition 2.8. Consider a ring R/I which is quasi-Abelian for some ideal I of
the ring R. If I is a reduced ring (possibly without an identity), then it follows that
R is also quasi-Abelian.

Proof. Let e ∈ Sl(R). Given that R/I is quasi-Abelian and 0 = eR(1 − e) ⊆ I,
we can deduce that (1− e)Re ⊆ I. Consequently, if ((1− e)Re)2 = 0, it implies that
(1− e)Re = 0, since I is a reduced ring. As a result, R is also quasi-Abelian.

The reducedness of I in the previous proposition cannot be dropped, as demon-
strated in the following example.
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Example 2.9. The ring R = T2(F ), where F is a field, is not quasi-Abelian. The
only non-zero proper ideals of R are

I1 =

[
F F
0 0

]
, I2 =

[
F F
0 0

]
, and I2 =

[
0 F
0 0

]
.

But R/I1 ∼= R/I2 ∼= F and R/I3 =

{[
a 0
0 b

]
+ I3 | a, b ∈ F

}
is a reduced ring, and

hence each R/Ii is quasi-Abelian although all Ii are not reduced.

Furthermore, a nontrivial corner of a quasi-Abelian ring may necessarily exhibits
the quasi-Abelian property, as demonstrated in the following proposition.

Example 2.10. Consider the ring R = M3(R), consisting of 2-by-2 matrices with
real entries. Let e be the idempotent defined as:

e =

 1 1 1
0 0 −1
0 0 1


The corner eRe is defined as the set of matrices:

eRe =


 a a b
−c −c −d
c c c

 | a, b, c, d ∈ R


While R is quasi-Abelian, as indicated by Theorem 2.6, eRe does not share this

property. This is due to the idempotent

 1 1 1
0 0 0
0 0 0

 in eRe, which is left semicentral

but not central.

Notice that even if every corner eRe of a ring R is quasi-Abelian for all non-identity
idempotents e, R is not necessarily quasi-Abelian. This can be observed in the non-
quasi-Abelian ring R = T2(Z) whose every idempotent e satisfies eRe ∼= Z.

Proposition 2.11. (i) The class of quasi-Abelian rings is closed under direct
sums and direct products.

(ii) For a central idempotent e of a ring R, eR and (1− e)R are both quasi-Abelian
if and only if R is quasi-Abelian.

Proof. The proof is routine.

Here are some examples that demonstrate the independence of the classes of quasi-
Abelian rings, NI rings, and directly finite rings.

Example 2.12. (i) Indeed, for a field F , consider the ring R = T2(F ). It is a
2-primal ring and hence an NI ring. Also, R is directly finite. However, the

idempotent e =

[
1 0
0 0

]
of R is left semicentral but not central. This fact

establishes that R is not a quasi-Abelian ring.
(ii) Indeed, for a field K and an integer n ≥ 2, let’s consider the ring R = K〈a, b |

an = 0〉, which is the free algebra with two noncommuting indeterminates a and
b over K subject to the relation an = 0. According to [16, Example 2.3 (2)], R
is RIP (hence, quasi-Abelian) but not NI.
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(iii) Indeed, according to [22, Theorem 1.0], the ring R = M2(D) is not directly finite
for some domain D. However, R is quasi-Abelian.

3. Quasi-Abelian property for subrings of upper triangular matrix rings

For any ring R and an integer n ≥ 2, the ring Tn(R) is not quasi-Abelian, where the
element e11, with 1 in the (1, 1)-position and 0 elsewhere, is left semicentral idempotent
but not central. In this section, we discuss the extension of quasi-Abelianity of a ring
R to some subrings of its ring of upper triangular matrices.

Initially, we provide a description of the set of left semicentral idempotents for these
extensions. It is important to note that all results presented in this section exhibit
left-right symmetry. Therefore, any condition for a ring R that depends on Sl(R) can
be equivalently obtained for Sr(R) analogously.

For a ring R, the trivial extension of R by R is denoted as T (R,R) and is defined
as the ring R ⊕ R with the usual addition and multiplication operations given by
(r1, s1)(r2, s2) = (r1r2, r1s2+s1r2). It is worth noting that T (R,R) can be represented
as:

T (R,R) ∼=
{[

a b
0 a

]
| a, b ∈ R

}
,

where a and b are elements of R.

Lemma 3.1. For a ring R, the set of left semicentral idempotent of the ring T (R,R)
is

Sl(T (R,R)) = {(f, fr(1− f)) | f ∈ Sl(R) and r ∈ R} .

Proof. Let e =

[
e1 e2
0 e1

]
be a left semicentral idempotent of T (R,R). We can

conclude that e1 ∈ Sl(R). Therefore, we have e1xe2 + e2xe1 − xe2 = 0 for every
x ∈ R. Multiplying the last equation by e1 from the left, we obtain e1e2Re1 = 0,
and consequently, e2Re1 = 0 since e1 is a left semicentral idempotent. This implies
(1− e1)Re2 = 0, and we can deduce that e2 ∈ e1R(1− e1).

Conversely, consider an element α =

[
f fr(1− f)
0 f

]
∈ R for some f ∈ Sl(R)

and r ∈ R. It is obvious that α is idempotent. For every β =

[
a b
0 a

]
in T (R,R),

we have

(1− α)βα =

[
1− f −fr(1− f)

0 1− f

] [
a b
0 a

] [
f fr(1− f)
0 f

]
=

[
(1− f)af (1− f)bfr(1− f)− fr(1− f)af

0 (1− f)af

]
= 0,

which implies that α is a left semicentral idempotent.
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Let R be a ring and define subrings of Tn(R) as follows:

Dn(R) =




a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a

 | a, aij ∈ R
 ,

for all integers n ≥ 2. The next proposition describes the left semicentral idempotents
of Dn(R).

Proposition 3.2. For a ring R and a positive integer n ≥ 2, the set of left
semicentral idempotents of the ring Dn(R) is

Sl(Dn(R)) =




e e12 e13 · · · e1n
0 e e23 · · · a2n
0 0 e · · · e3n
...

...
...

. . .
...

0 0 0 · · · e

 | e ∈ Sl(R) and eij ∈ eR(1− e)

 .

Proof. Utilizing induction for the case of n, we can demonstrate the validity of the
definition of set for n = 2 directly from Lemma 3.1, where D2(R) ∼= T (R,R). As-
suming that the provided definition of left semicentral idempotents holds for a certain

n, we consider the left semicentral idempotent ε =

[
α β
0 e

]
of Dn+1(R), where α =

e e12 · · · e1(n−1) e1n
0 e · · · e2(n−1) e2n
...

...
. . .

...
...

0 0
. . . e e(n−1)n

0 0 0 · · · e

 and β =


e1(n+1)

e2(n+1)
...

en(n+1)

. In fact, from (1−ε)Dn+1(R)ε = 0,

we deduce (1 − α)Dn(R)α = 0, and α ∈ Sl(Dn(R)). Consequently, e ∈ Sl(R), and
eij ∈ eR(1−e), for every 1 ≤ i < j ≤ n, form the assumption. Additionally, the equa-
tion (1−α)aβ+ (1−α)be− βa11e = 0, holds for every a = [aij] ∈ Dn(R) and b ∈ Rn.
By multiplying the previous equation with (1−e)In from the left, where In represents
the identity matrix of Mn(R), we obtain (1 − e)aβ + (1 − e)be − (1 − e)βa11e = 0.
Setting a = 1 and b = 0, it follows that (1 − e)β(1 − e) = 0. Given that e ∈ Sl(R)
and (1 − e)βe = 0, we conclude that (1 − e)β = 0. Returning to the equation
(1−α)aβ+ (1−α)be−βa11e = 0 and selecting a = α and b = 0 yields βe = 0. Thus,
β = eβ(1− e), implying that ei(n+1) ∈ eR(1− e) for i = 1, · · · , n, thereby completing
the proof.

Let R be a ring and define subrings of Tn(R) as following:

Vn(R) =




a1 a2 a3 · · · an
0 a1 a2 · · · an−1
0 0 a1 · · · an−2
...

...
...

. . .
...

0 0 0 · · · a1

 | ai ∈ R
 .

The next proposition describes the left semicentral idempotents of Vn(R).
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Proposition 3.3. For a ring R and a positive integer n ≥ 2, the set of left
semicentral idempotents of the ring Vn(R) is

Sl(Dn(R)) =




e1 e2 e3 · · · en
0 e1 e2 · · · an−1
0 0 e1 · · · en−2
...

...
...

. . .
...

0 0 0 · · · e1

 | e1 ∈ Sl(R) and ei ∈ e1R(1− e1) for i ≥ 2

 .

Proof. We can employ a similar methodology as demonstrated in the proof of
Proposition 3.2, where V2(R) ∼= T (R,R).

The next theorem establishes the extension of the quasi-Abelian property from a
ring R to the subrings Dn(R) and Vn(R) of Tn(R).

Theorem 3.4. For a ring R and an integer n ≥ 2, the following statements are
equivalent:

(i) R is quasi-Abelian;
(ii) Dn(R) is quasi-Abelian;

(iii) Vn(R) is quasi-Abelian.

Proof. (i) ⇒ (ii): Suppose ε ∈ Sl(Dn(R)). Then, we can express ε as follows:

ε =


e e12 e13 · · · e1n
0 e e23 · · · a2n
0 0 e · · · e3n
...

...
...

. . .
...

0 0 0 · · · e


where e ∈ Sl(R) and eij ∈ eR(1 − e), as show in Proposition 3.2. However, since R
is quasi-Abelian, it follows that e is a central element. Consequently, we can deduce
that ε = eIn ∈ B(Dn(R)), where In represents the identity matrix of Mn(R). Thus
Dn(R) is quasi-Abelian.

(ii) ⇒ (i): Let e ∈ Sl(R). This implies that eIn ∈ Sl(Dn(R)). Given that Dn(R) is
quasi-Abelian, we can infer that eIn ∈ B(Dn(R)), which leads to the conclusion that
e ∈ B(R). Thus R is a quasi-Abelian ring.

(i)⇔(iii) can be established using analogous arguments to those applied in proving
the equivalence between (i) and (ii), making use of Proposition 3.3.

Corollary 3.5. For a ring R, an integer m,n ≥ 2, and an indeterminate X, the
following statements are equivalent:

(i) R is quasi-Abelian;
(ii) T (R,R) is quasi-Abelian;

(iii) R[X]/〈Xm〉 is quasi-Abelian;

Proof. It is clear since T (R,R) ∼= D2(R) and R[x]/〈xn〉 ∼= Vn(R).

4. Extensions of quasi-Abelian rings

In this section, we establish the quasi-Abelian property of various ring extensions.
Recall [23] that if R is a ring and S is a multiplicatively closed subset of R satisfying
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1 ∈ S and s1, s2 ∈ Γ implying s1s2 ∈ S, then the localization of R at S is a ring
denoted by Γ−1R. This localization comes from a ring homomorphism φ : R→ Γ−1R,
which satisfies the following properties:

• φ(s) is invertible for every s ∈ Γ.
• Every element in Γ−1R can be expressed as φ(a)(φ(s))−1, where s ∈ Γ.
• φ(a) = 0 if and only if as = 0 for some s ∈ Γ.

Moreover, if Γ consists of central invertible elements, then Γ−1R exists, as proven
in [23, Chapter 2, Proposition 1.4].

Recalling [16], for a ring R, let Γ be a multiplicatively closed subset of R. It is
not generally true that there exist e ∈ I(R) and u ∈ Γ such that ε = u−1e, whenever
ε ∈ I(Γ−1R). However, if ε = u−1e is a left (resp. right) semicentral idempotent
of Γ−1R, then e must also be a left (resp. right) semicentral idempotent of R, as
demonstrated in the following lemma.

Lemma 4.1. If R is a ring and Γ a multiplicatively closed subset of R consisting of
central regular elements, then Sl(Γ−1R) ⊆ Γ−1Sl(R).

Proof. Let ε = u−1e, with e ∈ R and u ∈ Γ, be a left semicentral idempotent of
Γ−1R. Hence, for every r ∈ R and v ∈ Γ, we have (u−1e)(v−1r)(u−1e) = (v−1r)(u−1e).
Choosing v = 1 and r = u, we get u−1e = e. So, e(v−1r)e = (v−1r)e and eRe = Re;
that e ∈ Sl(R).

Proposition 4.2. Let R be a ring and Γ a multiplicatively closed subset of R
consisting of central regular elements. Then R is quasi-Abelian if and only if the
localization of R at Γ is quasi-Abelian.

Proof. First, let R be quasi-Abelian and ε ∈ Sl(Γ−1R). So, ε = u−1e, for e ∈ Sl(R)
and u ∈ Γ, from Lemma 4.1. So, 0 = (1 − u−1e)(v−1r)u−1e = (uv)−1(1 − u−1e)re,
for every v ∈ Γ and r ∈ R, and so (1 − u−1e)re = 0. Choosing r = 1, we get
ε = u−1e = e. Hence, (1 − e)Re = 0 and e ∈ Sl(R). So e is central since R is
quasi-Abelian. Therefore, ε is central and Γ−1R is a quasi-Abelian ring.

Conversely, assume that Γ−1R is a quasi-Abelian ring and (1− e)Re = 0 for some
e ∈ I(R). For any r ∈ R and u ∈ Γ, we have (1− e)(v−1r)e = v−1(1− e)re = 0. So,
(1 − e)(Γ−1R)e = 0 and therefore e(Γ−1R)(1 − e) = 0, since Γ−1R is quasi-Abelian.
Thus eR(1− e) = 0 and R is quasi-Abelian.

Theorem 4.3. For a ring R, the following statements are equivalent:

(i) R is quasi-Abelian;
(ii) R[x] is quasi-Abelian;

(iii) R[[x]] is quasi-Abelian;
(iv) R[x, x−1] is quasi-Abelian;
(v) R[[x, x−1]] is quasi-Abelian.

Proof. The equivalence between (ii)⇔(iv) and (iii)⇔(v) follows directly from Propo-
sition 4.2 by considering Γ = {1, x, x2, . . .}, as R[x, x−1] = Γ−1R[x] and R[[x, x−1]] =
Γ−1R[[x]]. The implications from (ii) or (iii) to (i) are straightforward since Sl(R) ⊆
Sl(T ) whenever T is R[x] or R[[x]]. For (i)⇒(ii), we consider e(x) = e0+e1x+· · ·+enxn
in Sl(R[x]). By [5, Proposition 2.4], we have e0 ∈ Sl(R), e0ei = ei, and eie0 = 0 for
i = 0, 1, . . . , n. Therefore, due to the quasi-Abelianity of R, e0 is central, and ei = 0
for every i ≥ 1. Thus, e(x) = e0 ∈ B(R) ⊆ B(R[x]). Hence, R[x] is quasi-Abelian.
Similarly, (i)⇒(iii) is proven by employing [5, Proposition 2.5].
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Let R be an S-algebra over a commutative ring S. Recall that the Dorroh extension
of R by S is the ring D = R ×Dor S with operations defined as follows: (r1, s1) +
(r2, s2) = (r1 + r2, s1 + s2) and (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2), for every
r1, r2 ∈ R and s1, s2 ∈ S. The following proposition extends the notion of quasi-
Abelianity from a ring to its Dorroh extension.

Proposition 4.4. Let R be an algebra over a commutative ring S. Then the
Dorroh extension of R by S is quasi-Abelian.

Proof. Let e = (e1, e2) ∈ Sl(R×Dor S). Then (1− e)(R×Dor S)e = 0 and (−e1, 1−
e2)(r, s)(e1, e2) = 0, for every s ∈ S and r ∈ R. This yields −e1re1 + (1 − e2)re1 −
se1e1 − e2e1r + (1− e2)se1 + (1− e2)e2r − se2e1 = 0, and (1− e2)se2 = 0. So, e2 is a
central idempotent, and we have the equation −e1re1+re1−e2re1−se21−e2e1r+se1−
e2se1 − se2e1 = 0. For every s ∈ S and r ∈ R, we have (e1, e2)(r, s)(−e1, 1 − e2) =
(−e1re1− e2re1− se1e1 + (1− e2)e1r− e2se1 + e2(1− e2)r+ s(1− e2)e1, e2s(1− e2)) =
(−e1re1− e2re1− se21 + e1r− e2e1r− e2se1 + se1− se2e1, 0) = (−e1re1− e2re1− se21 +
e1r − e2e1r − e2se1 + se1 − se2e1, 0) = 0. From these observations, it follows that
e ∈ Sr(R×Dor S) and R×Dor S is quasi-Abelian.

Recall unitization of a ring R is the Dorroh extension of R by Z.

Corollary 4.5. The unitization of a ring R is quasi-Abelian.

5. Applications

According to [22], a ring R is termed as torsion-free if there exists a prime ideal
P of R such that O(P ) = 0, where O(P ) = {a ∈ R | aRb = 0 for some b ∈ R \ P}.
The following proposition outlines a significant property for rings that are both quasi-
Abelian and torsion-free.

Proposition 5.1. If R is a quasi-Abelian and torsion-free ring, then R is semi-
central reduced.

Proof. Assume that O(P ) = 0 for some prime ideal P of R, and let e ∈ Sl(R) ∪
Sr(R). As R is quasi-Abelian, we have e ∈ B(R), and due to quasi-Abelianity, we
know that (1 − e)Re = eR(1 − e) = 0. If e 6∈ P , then 1 − e ∈ O(P ), and e = 1. If
e ∈ P , then 1 − e 6∈ P , and hence e ∈ O(P ), and so e = 0. Thus, R is semicentral
reduced.

As a consequence, we get Proposition 8 in [13] as a corollary.

Corollary 5.2. Let R be an idempotent-reflexive p.q.-Baer ring. Then following
conditions are equivalent:

(i) R is prime.
(ii) R is torsion-free.

Proposition 5.3. Let R be a quasi-Abelian ring. If R contains an injective max-
imal right ideal, then R is right self-injective.

Proof. Let M be an injective maximal right ideal of R. Then, R = M⊕N , where N
is a minimal right ideal. Therefore, we can express M as M = eR and N = (1− e)R,
where e is a nontrivial idempotent of R. If NM = 0, it follows that (1 − e)Re = 0,
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implying that e is central due to the quasi-Abelian property of R. Consequently,
we have R = Re ⊕ R(1 − e), and the left R-module R/M is projective. Hence,
using [21, Lemma 1.1], R/M is R-flat. From [21, Proposition 1.4], it follows that
R/M is injective. Consequently, N is an injective R-module. If NM 6= 0, we have
NM = N , implying that there exists b ∈ N such that bM 6= 0. Hence, we define the
epimorphism f : M → N as φ(m) = bm for every m ∈M . As the right R-module N is
projective and M/ kerφ ∼= N , we can express M as M ∼= kerφ⊕M/ kerφ ∼= kerφ⊕N
as right R-modules. Thus, N is an injective R-module. Consequently, R = M ⊕N is
right self-injective.

In [11], a ring R is said to be a right HI-ring if R is a right hereditary ring containing
an injective maximal right ideal. The next corollary extends Corollary 8 in [14].

Corollary 5.4. For a ring R, the following statements are equivalent.

(i) R is semisimple and Artinian;
(ii) R is idempotent-reflexive and right HI-ring;

(iii) R is quasi-Abelian and right HI-ring.

Proof. The proof is direct from the previous proposition and [20, Corollary 7].

For a nonempty subset S of a ring R, we denote the right annihilator of S in R as
r(S), defined as r(S) = {x ∈ R | Sx = 0}. Similarly, the left annihilator is defined
and denoted as `(S). In [6], a ring R is termed right (resp. left) p.q.-Baer if the right
(resp. left) annihilator of a principally right (resp. left) ideal is a right (resp. left)
ideal generated by an idempotent. Moreover, from [4], R is defined as a right (resp.
left) cP-Baer ring if the right (resp. left) annihilator of a principally right (resp. left)
idempotent-generated ideal is a right (resp. left) idempotent-generated ideal.

The next two propositions utilize the aforementioned Baer-like properties as suffi-
cient conditions for a quasi-Abelian ring to be reflexive or idempotent-reflexive.

Proposition 5.5. If R is a quasi-Abelian and right (or left) p.q.-Baer ring, then
R is reflexive.

Proof. Let aRb = 0, for some a, b ∈ R. Then b ∈ r(aR) = eR for some e ∈ Sl(R).
Consequently, aRe = 0 and b = eb. However, since R is quasi-Abelian, e is central.
Hence, bRa = ebRa = bRae ⊆ bRaRe = 0, which implies that R is reflexive.

Proposition 5.6. If a ring R is quasi-Abelian and right (resp. left) cP-Baer, then
R is left (resp. right) idempotent-reflexive.

Proof. Indeed, it is sufficient to prove the right cP-Baer case. Let eRa = 0 for
some idempotent e2 = e and a ∈ R. Then, a ∈ r(eR) = fR for some f ∈ Sl(R).
Consequently, we have eRf = 0 and a = fa. However, since R is quasi-Abelian,
f is central. Hence, aRe = faRe = aRef = 0, and this demonstrates that R is
idempotent-reflexive.

Finally, we proceed to characterize the structure of non-Abelian quasi-Abelian rings
of minimal order.

Theorem 5.7. If R is a non-Abelian quasi-Abelian ring of minimal order, then R

is of order 16 and is isomorphic to M2(Z2) or the ring

[
Z2 xZ2[x]/〈x2〉

xZ2[x]/〈x2〉 Z2

]
.
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Proof. Consider a non-Abelian quasi-Abelian ring R of minimal order. It is worth
noting that R cannot be a local ring, as local rings are known to be Abelian. Using the
results in [8], it becomes apparent that any noncommutative ring of minimal order is
isomorphic to T2(Z2). However, T2(Z2) is not quasi-Abelian. Consequently, the order
of R must be greater than or equal to 16. Moreover, referring to [8], if a finite ring
possesses a cube-free factorization, it must be commutative. However, since M2(Z2)
is both non-Abelian and quasi-Abelian, we can conclude that the order of R must
indeed be 16.

According to the Wedderburn-Artin theorem, we have R/J (R) ∼=
∑m

i=1Mi(Di),
where ki are positive integers and Di are division rings. Next, let’s consider the case
where ki = 1 for all i, and observe that M2(Z2) is a quasi-Abelian ring. Therefore, we
encounter three possibilities: |J (R)| = 2, |J (R)| = 4, and |J (R)| = 8.

If |J (R)| = 8, then we would have R/J (R) ∼= Z2, implying that R is a local ring.
However, this contradicts the assumption that R is non-Abelian.

In the case of |J (R)| = 4, we find that R/J (R) ∼= Z2 ⊕ Z2. As R is non-Abelian,
there exists a nontrivial idempotent e in R such that er − re 6= 0 for some r ∈ R.
Consider the set S1 = {0, 1, e, 1− e} to obtain the expression R = {a+ b | a ∈ S1, b ∈
J (R)}. Consequently, by [1, Proposition 2.7(1)], R has RIP, and specifically, it is
quasi-Abelian.

For |J (R)| = 2, we find that R/J (R) = Z2⊕Z2⊕Z2, and thus J (R) is nilpotent.
By using [18, Proposition 3.6.2], we can establish the existence of orthogonal nontrivial
idempotents e1, e2, e3 in R satisfying e1+e2+e3 = 1. This collection of nontrivial idem-
potents forms a subset S2 = {0, 1, e1, e2, e3, 1−e1, 1−e2, 1−e3} of I(R). Furthermore,
for any r ∈ R, we have ejr(1− ej) = ejr(ei + ek) = ejrei + ejrek = ejbei + ejbek = 0,
and ejR(1− ej) = 0, due to the quasi-Abelianity of R. Hence, (1− ej)Rej = 0, by the
quasi-Abelianity of R. Therefore, 0 = (1−ej)bej = (ei+ek)bej = eibej +ekbej = eibej,
a contradiction. Consequently, we can conclude that eiRej = 0 for all i, j with i 6= j.
Given that R is non-Abelian, we can conclude that S2 contains a non-central element,
denoted as ei, and eix 6= xei for some x ∈ R. But eix − xei = (ei + ej + ek)(eix −
xei)(ei+ej +ek) = ei(eix−xei)ei+ej(eix−xei)ej +ek(eix−xei)ek = eixei−eixei = 0,
a contradiction. Thus, the case of |J (R)| = 8 is impossible.

The remaining part of the proof can be deduced directly from references [1, Example
2.10] and [17, Theorem 4.2].

Observe that Mn(Z2) is semiprime for every n ≥ 1, and as a result, we obtain the
following corollary.

Corollary 5.8. For a non-Abelian ring R, the following conditions are equivalent.

(i) R is a semiprime ring of minimal order if;
(ii) R is a quasi-Abelian ring of minimal order;
(iii) R is a RIP ring of minimal order;
(iv) R is a reflexive ring of minimal order;
(v) R is a one-sided idempotent-reflexive ring of minimal order;
(vi) R is a left idempotent-reflexive ring of minimal order.
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