KYUNGPOOK Math. J. 63(2023), 593-610 https://doi.org/10.5666/KMJ.2023.63.4.593 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Generalized Chen's Conjecture for Biharmonic Maps on Foliations

XUESHAN FU

Department of Mathematics, Shenyang University of Technology, Shenyang 110870, People Republic of China

 $e ext{-}mail: xsfu@sut.edu.cn}$

SEOUNG DAL JUNG*

Department of Mathematics, Jeju National University, Jeju 63243, Republic of Korea

e-mail: sdjung@jejunu.ac.kr

ABSTRACT. In this paper, we prove the generalized Chen's conjecture for $(\mathcal{F}, \mathcal{F}')$ -biharmonic maps, such maps are critical points of the transversal bienergy functional.

1. Introduction

On a Riemannian geometry, harmonic maps play a central role to study the geometric properties. They are critical points of the energy functional $E(\phi)$ for smooth maps $\phi: (M, g) \to (M', g')$, where

$$E(\phi) = \frac{1}{2} \int_M |d\phi|^2 \mu_M,$$

where μ_M is the volume element. It is well known that harmonic map is a solution of the Euler-Largrange equation $\tau(\phi) = 0$, where $\tau(\phi) = \operatorname{tr}_g(\nabla d\phi)$ is the tension field.

In 1983, J. Eells and L. Lemaire extended the notion of harmonic map to bi-

Received August 31, 2023; accepted November 3, 2023.

2020 Mathematics Subject Classification: 53C12, 53C43, 58E20.

Key words and phrases: Riemannian foliation, Transversally harmonic map, Transversally biharmonic map, $(\mathcal{F}, \mathcal{F}')$ -harmonic map, $(\mathcal{F}, \mathcal{F}')$ -biharmonic map, Generalized Chen's conjecture.

The second author was supported by the 2022 scientific promotion program funded by Jeju National University.

^{*} Corresponding Author.

harmonic map, which is a critical points of the bienergy functional $E_2(\phi)$, where

$$E_2(\phi) = \frac{1}{2} \int_M |\tau(\phi)|^2 \mu_M.$$

It is well-known [9] that harmonic maps are always biharmonic. But the converse is not true. At first, B.Y. Chen [3] raised so called Chen's conjecture and later, R. Caddeo et al. [2] raised the generalized Chen's conjecture. That is,

Generalized Chen's conjecture: Every biharmonic submanifold of a Riemannian manifold of non-positive curvature must be harmonic.

About the generalized Chen's conjecture, Nakauchi et al. [19] showed the following.

Theorem 1.1. [19] Let (M,g) be a complete Riemannian manifold and (M',g') be of non-positive sectional curvature. Then

- (1) every biharmonic map $\phi: M \to M'$ with finite energy and finite bienergy must be harmonic.
- (2) In the case $Vol(M) = \infty$, every biharmonic map with finite bienergy is harmonic.

Now, we study the generalized Chen's conjecture for biharmonic maps on foliated Riemannian manifolds and extend Theorem 1.1 to foliations. Let (M, g, \mathcal{F}) and (M', g', \mathcal{F}') be the foliated Riemannian manifolds. Let $\phi : M \to M'$ be a smooth foliated map, that is, map preserving the leaves. Then ϕ is said to be $(\mathcal{F}, \mathcal{F}')$ -harmonic map [6] if ϕ is a critical point of the transversal energy $E_B(\phi)$, which is given by

$$E_B(\phi) = \frac{1}{2} \int_M |d_T \phi|^2 \mu_M,$$

where $d_T\phi = d\phi|_Q$ is the differential map of ϕ restricted to the normal bundle Q of \mathcal{F} . From the first variational formula for the transversal energy functional [12], it is trivial that $(\mathcal{F}, \mathcal{F}')$ -harmonic map is a solution of $\tilde{\tau}_b(\phi) := \tau_b(\phi) + d_T\phi(\kappa_B) = 0$, where $\tau_b(\phi) = tr_Q(\nabla_{tr}d_T\phi)$ is the transversal tension field and κ_B is the basic part of the mean curvature form κ of \mathcal{F} .

The map ϕ is said to be $(\mathcal{F}, \mathcal{F}')$ -biharmonic map if ϕ is a critical point of the transversal bienergy functional $\tilde{E}_{B,2}(\phi)$, where

$$\tilde{E}_{B,2}(\phi) = \frac{1}{2} \int_M |\tilde{\tau}_b(\phi)|^2 \mu_M.$$

By the first variation formula for the transversal bienergy functional $\tilde{E}_{B,2}(\phi)$ (Theorem 3.7), we know that $(\mathcal{F}, \mathcal{F}')$ -harmonic map is always $(\mathcal{F}, \mathcal{F}')$ -biharmonic. But the converse is not true. So we prove the generalized Chen's conjecture for $(\mathcal{F}, \mathcal{F}')$ -biharmonic map. That is, we prove the following theorem

Theorem 1.2. (cf. Theorem 3.10) Let (M, g, \mathcal{F}) be a foliated Riemannian manifold and let (M', g', \mathcal{F}') be of non-positive transversal sectional curvature $K^{Q'}$, that is, $K^{Q'} \leq 0$. Let $\phi: M \to M'$ be a $(\mathcal{F}, \mathcal{F}')$ -biharmonic map. Then

- (1) if M is closed, then ϕ is automatically $(\mathfrak{F}, \mathfrak{F}')$ -harmonic;
- (2) if M is complete with $Vol(M) = \infty$ and $\tilde{E}_{B,2}(\phi) < \infty$, then ϕ is $(\mathfrak{F},\mathfrak{F}')$ -harmonic.
- (3) If M is complete with $E_B(\phi) < \infty$ and $\tilde{E}_{B,2}(\phi) < \infty$, then ϕ is $(\mathfrak{F},\mathfrak{F}')$ -harmonic.

Remark 1.3. On foliations, there is another kinds of harmonic map, called transversally harmonic map, which is a solution of the Eular-Lagrange equation $\tau_b(\phi) = 0$ [15]. Also, the transversally biharmonic map is defined [4], which is not a critical point of the bienergy $\tilde{E}_{B,2}(\phi)$. Two definitions for harmonic maps are equivalent when the foliation is minimal. The generalized Chen's conjectures for transversally biharmonic map have been proved in [11, 13].

2. Preliminaries

Let (M,g,\mathcal{F}) be a foliated Riemannian manifold of dimension n with a foliation \mathcal{F} of codimension q(=n-p) and a bundle-like metric g with respect to \mathcal{F} [18, 23]. Let $Q=TM/T\mathcal{F}$ be the normal bundle of \mathcal{F} , where $T\mathcal{F}$ is the tangent bundle of \mathcal{F} . Let g_Q be the induced metric by g on Q, that is, $g_Q=\sigma^*(g|_{T\mathcal{F}^\perp})$, where $\sigma:Q\to T\mathcal{F}^\perp$ is the cnonical bundle isomorphism. Then g_Q is the holonomy invariant metric on Q, meaning that $L_Xg_Q=0$ for $X\in T\mathcal{F}$, where L_X is the transverse Lie derivative with respect to X. Let ∇^Q be the transverse Levi-Civita connection on the normal bundle Q [23, 24] and R^Q be the transversal curvature tensor of $\nabla^Q\equiv\nabla$, which is defined by $R^Q(X,Y)=[\nabla_X,\nabla_Y]-\nabla_{[X,Y]}$ for any $X,Y\in \Gamma TM$. Let K^Q and Ric^Q be the transversal sectional curvature and transversal Ricci operator with respect to ∇ , respectively. Let $\Omega^r_B(\mathcal{F})$ be the space of all basic r-forms, i.e., $\omega\in\Omega^r_B(\mathcal{F})$ if and only if $i(X)\omega=0$ and $L_X\omega=0$ for any $X\in\Gamma T\mathcal{F}$, where i(X) is the interior product. Then $\Omega^*(M)=\Omega^*_B(\mathcal{F})\oplus\Omega^*_B(\mathcal{F})^\perp$ [1]. It is well known that κ_B is closed, i.e., $d\kappa_B=0$, where κ_B is the basic part of the mean curvature form κ [1, 20]. Let $\overline{*}:\Omega^r_B(\mathcal{F})\to\Omega^q_B^{-r}(\mathcal{F})$ be the star operator given by

$$\bar{*}\omega = (-1)^{(n-q)(q-r)} * (\omega \wedge \chi_{\mathcal{F}}), \quad \omega \in \Omega_B^r(\mathcal{F}),$$

where $\chi_{\mathcal{F}}$ is the characteristic form of \mathcal{F} and * is the Hodge star operator associated to g. Let $\langle \cdot, \cdot \rangle$ be the pointwise inner product on $\Omega_B^r(\mathcal{F})$, which is given by

$$\langle \omega_1, \omega_2 \rangle \nu = \omega_1 \wedge \bar{*}\omega_2$$

where ν is the transversal volume form such that $*\nu = \chi_{\mathcal{F}}$. Let $\delta_B : \Omega_B^r(\mathcal{F}) \to \Omega_B^{r-1}(\mathcal{F})$ be the operator defined by

$$\delta_B \omega = (-1)^{q(r+1)+1} \bar{*} (d_B - \kappa_B \wedge) \bar{*} \omega,$$

where $d_B = d|_{\Omega_B^*(\mathcal{F})}$. It is well known [22] that δ_B is the formal adjoint of d_B with respect to the global inner product. That is,

$$\int_{M} \langle d\omega_1, \omega_2 \rangle \mu_M = \int_{M} \langle \omega_1, \delta_B \omega_2 \rangle \mu_M$$

for any compactly supported basic forms ω_1 and ω_2 , where $\mu_M = \nu \wedge \chi_{\mathcal{F}}$ is the volume element.

There exists a bundle-like metric such that the mean curvature form satisfies $\delta_B \kappa_B = 0$ on compact manifolds [5, 16, 17]. The basic Laplacian Δ_B acting on $\Omega_B^*(\mathcal{F})$ is given by

$$\Delta_B = d_B \delta_B + \delta_B d_B$$
.

Now we define the bundle map $A_Y : \Gamma Q \to \Gamma Q$ for any $Y \in TM$ by

$$(2.1) A_Y s = L_Y s - \nabla_Y s,$$

where $L_Y s = \pi[Y, Y_s]$ for $\pi(Y_s) = s$. It is well-known [14] that for any infitesimal automorphism Y (that is, $[Y, Z] \in \Gamma T \mathcal{F}$ for all $Z \in \Gamma T \mathcal{F}$ [14])

$$A_Y s = -\nabla_{Y_s} \pi(Y),$$

where $\pi: TM \to Q$ is the natural projection and Y_s is the vector field such that $\pi(Y_s) = s$. So A_Y depends only on $\bar{Y} = \pi(Y)$ and is a linear operator. Moreover, A_Y extends in an obvious way to tensors of any type on Q [14]. Then we have the generalized Weitzenböck formula on $\Omega_R^*(\mathcal{F})$ [10]: for any $\omega \in \Omega_R^r(\mathcal{F})$,

(2.2)
$$\Delta_B \omega = \nabla_{\mathrm{tr}}^* \nabla_{\mathrm{tr}} \omega + F(\omega) + A_{\kappa_B^{\sharp}} \omega,$$

where $F(\omega) = \sum_{a,b} \theta^a \wedge i(E_b) R^Q(E_b, E_a) \omega$ and

(2.3)
$$\nabla_{\mathrm{tr}}^* \nabla_{\mathrm{tr}} \omega = -\sum_a \nabla_{E_a, E_a}^2 \omega + \nabla_{\kappa_B^{\sharp}} \omega.$$

The operator $\nabla_{\text{tr}}^* \nabla_{\text{tr}}$ is positive definite and formally self adjoint on the space of basic forms [10]. If ω is a basic 1-form, then $F(\omega)^{\sharp} = \text{Ric}^{Q}(\omega^{\sharp})$. Now, we recall the transversal divergence theorem on a foliated Riemannian manifold for later use.

Theorem 2.1. [26] Let (M, g, \mathcal{F}) be a closed, oriented Riemannian manifold with a transversally oriented foliation \mathcal{F} and a bundle-like metric g with respect to \mathcal{F} . Then for a transversal infinitesimal automorphism X,

$$\int_{M} \operatorname{div}_{\nabla}(\pi(X)) \mu_{M} = \int_{M} g_{Q}(\pi(X), \kappa_{B}^{\sharp}) \mu_{M},$$

where $\operatorname{div}_{\nabla} s$ denotes the transversal divergence of s with respect to the connection ∇ .

3. $(\mathcal{F}, \mathcal{F}')$ -Harmonic and Biharmonic Maps on Foliations

Let $\phi: (M, g, \mathcal{F}) \to (M', g', \mathcal{F}')$ be a smooth foliated map, i.e., $d\phi(T\mathcal{F}) \subset T\mathcal{F}'$, and $\Omega_B^r(E) = \Omega_B^r(\mathcal{F}) \otimes E$ be the space of *E*-valued basic *r*-forms, where $E = \phi^{-1}Q'$ is the pull-back bundle on M. We define $d_T\phi: Q \to Q'$ by

$$d_T\phi:=\pi'\circ d\phi\circ\sigma.$$

Trivially, $d_T \phi \in \Omega^1_B(E)$. Let ∇^{ϕ} and $\tilde{\nabla}$ be the connections on E and $Q^* \otimes E$, respectively. Then a foliated map $\phi : (M, g, \mathcal{F}) \to (M', g', \mathcal{F}')$ is called *transversally totally geodesic* if it satisfies

$$\tilde{\nabla}_{\rm tr} d_T \phi = 0,$$

where $(\tilde{\nabla}_{\mathrm{tr}}d_T\phi)(X,Y) = (\tilde{\nabla}_Xd_T\phi)(Y)$ for any $X,Y \in \Gamma Q$. Note that if $\phi: (M,g,\mathcal{F}) \to (M',g',\mathcal{F}')$ is transversally totally geodesic with $d\phi(Q) \subset Q'$, then, for any transversal geodesic γ in M, $\phi \circ \gamma$ is also transversal geodesic. From now on, we use ∇ instead of all induced connections if we have no confusion. We define $d_{\nabla}: \Omega_R^r(E) \to \Omega_R^{r+1}(E)$ by

$$(3.2) d_{\nabla}(\omega \otimes s) = d_{B}\omega \otimes s + (-1)^{r}\omega \wedge \nabla s$$

for any $s \in \Gamma E$ and $\omega \in \Omega_B^r(\mathcal{F})$. Let δ_{∇} be a formal adjoint of d_{∇} with respect to the inner product. Note that

(3.3)
$$d_{\nabla}(d_T\phi) = 0, \quad \delta_{\nabla}d_T\phi = -\tau_b(\phi) + d_T\phi(\kappa_R^{\sharp}),$$

where $\tau_b(\phi)$ is the transversal tension field of ϕ defined by

(3.4)
$$\tau_b(\phi) := \operatorname{tr}_Q(\nabla_{\operatorname{tr}} d_T \phi).$$

The Laplacian Δ on $\Omega_B^*(E)$ is defined by

$$\Delta = d_{\nabla} \delta_{\nabla} + \delta_{\nabla} d_{\nabla}.$$

Moreover, the operator A_X is extended to $\Omega_B^r(E)$ as follows:

$$A_X\Psi = L_X\Psi - \nabla_X\Psi,$$

where $L_X = d_{\nabla}i(X) + i(X)d_{\nabla}$ for any $X \in \Gamma TM$ and $i(X)(\omega \otimes s) = i(X)\omega \otimes s$. Hence $\Psi \in \Omega_B^*(E)$ if and only if $i(X)\Psi = 0$ and $L_X\Psi = 0$ for all $X \in \Gamma T\mathcal{F}$. Then the generalized Weitzenböck type formula (2.2) is extended to $\Omega_B^*(E)$ as follows [12]: for any $\Psi \in \Omega_B^r(E)$,

$$\Delta\Psi = \nabla_{\rm tr}^* \nabla_{\rm tr} \Psi + A_{\kappa_B^\sharp} \Psi + F(\Psi),$$

where $\nabla_{\mathrm{tr}}^* \nabla_{\mathrm{tr}}$ is the operator induced from (2.3) and $F(\Psi) = \sum_{a,b=1}^q \theta^a \wedge i(E_b) R(E_b, E_a) \Psi$. Moreover, we have that for any $\Psi \in \Omega_B^r(E)$,

(3.6)
$$\frac{1}{2}\Delta_B|\Psi|^2 = \langle \Delta\Psi, \Psi \rangle - |\nabla_{tr}\Psi|^2 - \langle A_{\kappa_B^{\sharp}}\Psi, \Psi \rangle - \langle F(\Psi), \Psi \rangle.$$

3.1. $(\mathcal{F}, \mathcal{F}')$ -harmonic maps

About this section, see [6]. Let Ω be a compact domain of M. Then the transversal energy functional of ϕ on Ω is defined by

(3.7)
$$E_B(\phi;\Omega) = \frac{1}{2} \int_{\Omega} |d_T \phi|^2 \mu_M.$$

Then Dragomir and Tommasoli [6] defined $(\mathcal{F}, \mathcal{F}')$ -harmonic if ϕ is a critical point of the transversal energy functional $E_B(\phi)$. Also, we obtain the first variational formula [6, 12]

(3.8)
$$\frac{d}{dt}E_B(\phi_t;\Omega)\Big|_{t=0} = -\int_{\Omega} \langle \tilde{\tau}_b(\phi), V \rangle \mu_M,$$

where $V = \frac{d\phi_t}{dt}|_{t=0}$ is the normal variation vector field of a foliated variation $\{\phi_t\}$ of ϕ and

(3.9)
$$\tilde{\tau}_b(\phi) := \tau_b(\phi) - d_T \phi(\kappa_R^{\sharp}).$$

From (3.8), we have the following [6]

Proposition 3.1. A foliated map ϕ is $(\mathfrak{F},\mathfrak{F}')$ -harmonic map if and only if $\tilde{\tau}_b(\phi) = 0$

Remark 3.2. (1) If $\phi: M \to \mathbb{R}$ is a basic function, then $\tilde{\tau}_b(\phi) = -\Delta_B \phi$. So $(\mathcal{F}, \mathcal{F}')$ -harmonic map is a generalization of a basic harmonic function.

(2) On foliated manifold, there is another kinds of harmonic map, transvesally harmonic map, which is a solution of the Euler-Lagrange equation $\tau_b(\phi) = 0$ by Konderak and Wolak [15]. But the transversally harmonic map is not a critical point of the energy functional $E_B(\phi)$. Two definitions are equivalent when the foliation is minimal.

Now, we define the transversal Jacobi operator $J_{\phi}^T: \Gamma \phi^{-1}Q' \to \Gamma \phi^{-1}Q'$ by

(3.10)
$$J_{\phi}^{T}(V) = \nabla_{tr}^{*} \nabla_{tr} V - \operatorname{tr}_{Q} R^{Q'}(V, d_{T}\phi) d_{T}\phi.$$

Then J_{ϕ}^{T} is a formally self-adjoint operator. That is, for any $V, W \in \Gamma \phi^{-1}Q'$,

(3.11)
$$\int_{M} \langle J_{\phi}^{T}(V), W \rangle \mu_{M} = \int_{M} \langle V, J_{\phi}^{T}(W) \rangle \mu_{M}.$$

Also, we have the second variation formula for the transversal energy functional $E_B(\phi)$.

Theorem 3.3. ([6], The second variation formula) Let $\phi: (M, g, \mathcal{F}) \to (M', g', \mathcal{F}')$ be a $(\mathcal{F}, \mathcal{F}')$ -harmonic map and let $\{\phi_{s,t}\}$ be the foliated variation of ϕ supported in a compact domain Ω . Then

(3.12)
$$\frac{\partial^2}{\partial s \partial t} E_B(\phi_{s,t}; \Omega) \Big|_{(s,t)=(0,0)} = \int_{\Omega} \langle J_{\phi}^T(V), W \rangle \mu_M,$$

where V and W are the variation vector fields of $\phi_{s,t}$.

Proof. Let $V=\frac{\partial \phi_{s,t}}{\partial s}\Big|_{(s,t)=(0,0)}$ and $W=\frac{\partial \phi_{s,t}}{\partial t}\Big|_{(s,t)=(0,0)}$ be the variation vector fields of $\phi_{s,t}$. Let $\Phi: M\times (-\epsilon,\epsilon)\times (-\epsilon,\epsilon)\to M'$ be a smooth map, which is defined by $\Phi(x,s,t)=\phi_{s,t}(x)$. Let ∇^Φ be the pull-back connection on $\Phi^{-1}Q'$. It is trivial that $[X,\frac{\partial}{\partial t}]=[X,\frac{\partial}{\partial s}]=0$ for any vector field $X\in TM$. From (3.8), we have

$$\frac{\partial^2}{\partial s \partial t} E_B(\phi_{s,t}; \Omega) = -\int_{\Omega} \langle \frac{\partial^2 \phi_{s,t}}{\partial s \partial t}, \tilde{\tau}_b(\phi_{s,t}) \rangle \mu_M - \int_{\Omega} \langle \frac{\partial \phi_{s,t}}{\partial t}, \nabla^{\Phi}_{\frac{\partial}{\partial s}} \tilde{\tau}_b(\phi_{s,t}) \rangle \mu_M.$$

At (s,t)=(0,0), the first term vanishes because of $\tilde{\tau}_b(\phi)=0$. So

(3.13)
$$\frac{\partial^2}{\partial s \partial t} E_B(\phi_{s,t}; \Omega) \Big|_{(s,t)=(0,0)} = -\int_{\Omega} \langle W, \nabla^{\Phi}_{\frac{\partial}{\partial s}} \tilde{\tau}_b(\phi_{s,t}) \Big|_{(s,t)=(0,0)} \rangle \mu_M.$$

At $x \in M$, by a straight calculation, we have

(3.14)

$$\nabla^{\Phi}_{\frac{\partial}{\partial s}}\tilde{\tau}_{b}(\phi_{s,t}) = \sum_{a} \nabla^{\Phi}_{E_{a}} \nabla^{\Phi}_{E_{a}} d\Phi(\frac{\partial}{\partial s}) - \nabla^{\Phi}_{\kappa_{B}^{\sharp}} d\Phi(\frac{\partial}{\partial s}) + \sum_{a} R^{\Phi}(\frac{d}{dt}, E_{a}) d\Phi(E_{a}).$$

Hence at (s,t) = (0,0), we have

$$\left. \nabla^{\Phi}_{\frac{\partial}{\partial s}} \tilde{\tau}_b(\phi_{s,t}) \right|_{(s,t)=(0,0)} = -\nabla^*_{tr} \nabla_{tr} V + \operatorname{tr}_Q R^{Q'}(V, d_T \phi) d_T \phi.$$

That is, we have

(3.15)
$$\nabla^{\Phi}_{\frac{\partial}{\partial s}} \tilde{\tau}_b(\phi_{s,t}) \Big|_{(s,t)=(0,0)} = -J_{\phi}^T(V).$$

Hence the proof of (3.12) follows from (3.13) and (3.15).

Now, we define the basic Hessian $Hess_{\phi}^{T}$ of ϕ by

(3.16)
$$Hess_{\phi}^{T}(V,W) = \int_{M} \langle J_{\phi}^{T}(V), W \rangle \mu_{M}.$$

Then $Hess_{\phi}^T(V,W) = Hess_{\phi}^T(W,V)$ for any $V,W \in \phi^{-1}Q'$. If $Hess_{\phi}^T$ is positive semi-definite, that is, $Hess_{\phi}^T(V,V) \geq 0$ for any normal vector field V along ϕ , then ϕ is said to be weakly stable. Hence we have the following corollary.

Corollary 3.4. ([6], Stability) Let M be a closed Riemannian manifold and M' be of non-positive transversal sectional curvature. Then any $(\mathfrak{F}, \mathfrak{F}')$ -harmonic map $\phi: (M, \mathfrak{F}) \to (M', \mathfrak{F}')$ is weakly stable.

Remark 3.5. For the stability of transversally harmonic map (that is, $\tau_b(\phi) = 0$), see [11, Corollary 4.6]. In fact, under the same assumption, a transversally harmonic map is transversally f-stable, that is, $\int_M \langle (J_\phi^T - \nabla_{\kappa_B^\sharp})V, V \rangle e^{-f} \mu_M \geq 0$, where f is a basic function such that $\kappa_B = -df$.

3.2. $(\mathcal{F}, \mathcal{F}')$ -biharmonic maps

We define the transversal bienergy functional $\tilde{E}_{B,2}(\phi)$ on a compact domain Ω by

(3.17)
$$\tilde{E}_{B,2}(\phi;\Omega) := \frac{1}{2} \int_{\Omega} |\tilde{\tau}_b(\phi)|^2 \mu_M.$$

Definition 3.6. A foliated map $\phi: (M, g, \mathcal{F}) \to (M', g', \mathcal{F}')$ is said to be $(\mathcal{F}, \mathcal{F}')$ biharmonic map if ϕ is a critical point of the transversal bienergy functional $\tilde{E}_{B,2}(\phi)$.

Theorem 3.7. (The first variation formula) For a foliated map ϕ ,

(3.18)
$$\frac{d}{dt}\tilde{E}_{B,2}(\phi_t;\Omega)\Big|_{t=0} = -\int_{\Omega} \langle J_{\phi}^T(\tilde{\tau}_b(\phi)), V \rangle \mu_M,$$

where $V = \frac{d\phi_t}{dt}\Big|_{t=0}$ is the variation vector field of a foliated variation ϕ_t of ϕ .

Proof. Let $\Phi: M \times (-\epsilon, \epsilon) \to M'$ be a smooth map, which is defined by $\Phi(x, t) = \phi_t(x)$. Let ∇^{Φ} be the pull-back connection on $\Phi^{-1}Q'$. It is trivial that $[X, \frac{\partial}{\partial t}] = 0$ for any vector field $X \in TM$. From (3.17), we have

(3.19)
$$\frac{d}{dt}\tilde{E}_{B,2}(\phi_t;\Omega)\Big|_{t=0} = \int_{\Omega} \langle \nabla^{\Phi}_{\frac{d}{dt}} \tilde{\tau}_b(\phi_t)|_{t=0}, \tilde{\tau}_b(\phi) \rangle \mu_M.$$

From (3.11), (3.15) and (3.19), we finish the proof.

From the first variation formula for the transversal bienergy functional, we know the following fact.

Proposition 3.8. A $(\mathfrak{F}, \mathfrak{F}')$ -biharmonic map ϕ is a solution of the following equation

(3.20)
$$(\tilde{\tau}_2)_b(\phi) := J_{\phi}^T(\tilde{\tau}_b(\phi)) = 0.$$

Here $(\tilde{\tau}_2)_b(\phi)$ is called the $(\mathfrak{F},\mathfrak{F}')$ -bitension field of ϕ .

Remark 3.9. (1) From Remark 3.2, if ϕ is a basic function on M, then

$$(\tilde{\tau}_2)_b(\phi) = J_{\phi}^T(\tilde{\tau}_b(\phi)) = -J_{\phi}^T(\Delta_B\phi) = -\nabla_{tr}^*\nabla_{tr}(\Delta_B\phi) = \Delta_B^2\phi.$$

So $(\mathcal{F}, \mathcal{F}')$ -biharmonic map is a generalization of basic biharmonic function.

- (2) A $(\mathcal{F}, \mathcal{F}')$ -harmonic map is trivially $(\mathcal{F}, \mathcal{F}')$ -biharmonic map.
- (3) There is another kinds of biharmonic map on foliations, called transversally biharmonic map, which is a solution of $(\tau_2)_b(\phi) := J_{\phi}^T(\tau_b(\phi)) \nabla_{\kappa_B^{\sharp}} \tau_b(\phi) = 0$ [11]. Actually, transversally biharmonic map is a critical point of the transversal f-bienergy functional $E_{2,f}(\phi)$, which is defined by

$$E_{2,f}(\phi) = \frac{1}{2} \int_{M} |\tau_b(\phi)|^2 e^{-f} \mu_M,$$

where f is a solution of $\kappa_B = -df$.

3.3. Generalized Chen's conjecture

Now, we consider the generalized Chen's conjecture for $(\mathcal{F}, \mathcal{F}')$ -biharmonic maps.

Theorem 3.10. Let (M, g, \mathcal{F}) be a foliated Riemannian manifold and let (M', g', \mathcal{F}') be of non-positive transversal sectional curvature, that is, $K^{Q'} \leq 0$. Let $\phi : M \to M'$ be a $(\mathcal{F}, \mathcal{F}')$ -biharmonic map. Then

- (1) if M is closed, then ϕ is automatically $(\mathfrak{F}, \mathfrak{F}')$ -harmonic;
- (2) if M is complete with $Vol(M) = \infty$ and $\tilde{E}_{B,2}(\phi) < \infty$, then ϕ is $(\mathfrak{F},\mathfrak{F}')$ -harmonic:
- (3) If M is complete with $E_B(\phi) < \infty$ and $\tilde{E}_{B,2}(\phi) < \infty$, then ϕ is $(\mathfrak{F},\mathfrak{F}')$ -harmonic.

Proof. Let $\phi: M \to M'$ be a $(\mathcal{F}, \mathcal{F}')$ -biharmonic map. Then from (3.20)

$$(3.21) \qquad (\nabla_{tr}^{\phi})^*(\nabla_{tr}^{\phi})\tilde{\tau}_b(\phi) - \sum_a R^{Q'}(\tilde{\tau}_b(\phi), d_T\phi(E_a))d_T\phi(E_a) = 0,$$

where $\{E_a\}$ be a local orthonomal basic frame of Q. From the generalized Weitzenbock formula (3.5) and (3.6), we have

(3.22)
$$\frac{1}{2}\Delta_B|\tilde{\tau}_b(\phi)|^2 = \langle \nabla_{tr}^* \nabla_{tr} \tilde{\tau}_b(\phi), \tilde{\tau}_b(\phi) \rangle - |\nabla_{tr} \tilde{\tau}_b(\phi)|^2.$$

Hence from (3.21), we get

$$\frac{1}{2}\Delta_B|\tilde{\tau}_b(\phi)|^2 = -|\nabla_{tr}\tilde{\tau}_b(\phi)|^2 + \sum_a \langle R^{Q'}(\tilde{\tau}_b(\phi), d_T\phi(E_a))d_T\phi(E_a), \tilde{\tau}_b(\phi) \rangle.$$

That is,

$$|\tilde{\tau}_{b}(\phi)|\Delta_{B}|\tilde{\tau}_{b}(\phi)| = |d_{B}|\tilde{\tau}_{b}(\phi)||^{2} - |\nabla_{tr}\tilde{\tau}_{b}(\phi)|^{2} + \sum_{a} \langle R^{Q'}(\tilde{\tau}_{b}(\phi), d_{T}\phi(E_{a}))d_{T}\phi(E_{a}), \tilde{\tau}_{b}(\phi) \rangle.$$
(3.23)

By the Kato's inequality, that is, $|\nabla_{tr}\tilde{\tau}_b(\phi)| \ge |d_B|\tilde{\tau}_b(\phi)|$, and $K^{Q'} \le 0$, we have

$$(3.24) \frac{1}{2}\Delta_B|\tilde{\tau}_b(\phi)| \le 0.$$

That is, $|\tilde{\tau}_b(\phi)|$ is basic subharmonic.

(1) If M is closed, then $|\tilde{\tau}_b(\phi)|$ is trivially constant. From (3.23), we have that for all a,

$$(3.25) \nabla_{E_a} \tilde{\tau}_b(\phi) = 0.$$

Now, we define the normal vector field Y by

$$Y = \sum_{a} \langle d_T \phi(E_a), \tilde{\tau}_b(\phi) \rangle E_a.$$

Then from (3.25), we have

(3.26)
$$\operatorname{div}_{\nabla}(Y) = \sum_{a} \langle \nabla_{E_a} Y, E_a \rangle = \langle \tau_b(\phi), \tilde{\tau}_b(\phi) \rangle.$$

So by integrating (3.26) and by using the transversal divergence theorem (Theorem (2.1)), we get

$$(3.27) \qquad \int_{M} |\tilde{\tau}_b(\phi)|^2 \mu_M = 0,$$

which implies that $\tilde{\tau}_b(\phi) = 0$, that is, ϕ is the $(\mathcal{F}, \mathcal{F}')$ -harmonic map.

(2) Let M be a complete Riemannian manifold. Note that for any basic 1-form ω , it is trivial that $\delta_B \omega = \delta \omega$ and so $\Delta_B f = \Delta f$ for any basic function f. Hence by the Yau's maximum principle [25, Theorem 3], we have following lemma.

Lemma 3.11. If a nonnegative basic function f is basic-subharmonic, that is, $\Delta_B f \leq 0$, with $\int_M f^p < \infty \ (p > 1)$, then f is constant.

Since $\tilde{E}_{B,2}(\phi) < \infty$, by (3.24) and Lemma 3.11, $|\tilde{\tau}_b(\phi)|$ is constant. Moreover, since $Vol(M) = \infty$, $\int_M |\tilde{\tau}_B(\phi)|^2 \mu_M < \infty$ implies $\tilde{\tau}_b(\phi) = 0$, that is, ϕ is $(\mathcal{F}, \mathcal{F}')$ -harmonic.

(3) Now we define a basic 1-form ω on M by

(3.28)
$$\omega(X) = \langle d_T \phi(X), \tilde{\tau}_b(\phi) \rangle$$

for any normal vector field X. By using the Schwartz inequality, we get

$$\int_{M} |\omega| \mu_{M} = \int_{M} \left(\sum_{a} |\omega(E_{a})|^{2} \right)^{\frac{1}{2}} \mu_{M}$$

$$= \int_{M} \left(\sum_{a} |\langle d_{T}\phi(E_{a}), \tilde{\tau}_{b}(\phi) \rangle|^{2} \right)^{\frac{1}{2}} \mu_{M}$$

$$\leq \int_{M} |d_{T}\phi| |\tilde{\tau}_{b}(\phi)| \mu_{M}$$

$$\leq \left(\int_{M} |d_{T}\phi|^{2} \mu_{M} \right)^{\frac{1}{2}} \left(\int_{M} |\tilde{\tau}_{b}(\phi)|^{2} \mu_{M} \right)^{\frac{1}{2}}$$

$$= 2\sqrt{E_{B}(\phi)E_{B,2}(\phi)} < \infty.$$

On the other hand, by a straight calculation, we know that

(3.29)
$$\delta_B \omega = -|\tilde{\tau}_b(\phi)|^2.$$

Since $\int_M |\omega| \mu_M < \infty$ and $\int_M (\delta_B) \omega \mu_M = -\tilde{E}_{B,2}(\infty) < \infty$, by the Gaffney's theorem [8], we know that

(3.30)
$$\int_{M} |\tilde{\tau}_b(\phi)|^2 \mu_M = -\int_{M} (\delta_B \omega) \mu_M = -\int_{M} (\delta \omega) \mu_M = 0.$$

Hence $\tilde{\tau}_b(\phi) = 0$, that is, ϕ is $(\mathcal{F}, \mathcal{F}')$ -harmonic.

Remark 3.12. Note that for transversally biharmonic map, we need some conditions that the transversal Ricci curvature of M is nonnegative and positive at some point (cf. [11, Theorem 6.5]).

Now, we study the second variation formula for the transversal bienergy functional $\tilde{E}_{B,2}(\phi)$.

Theorem 3.13. (The second variation formula) For a foliated map $\phi:(M,g,\mathcal{F})\to (M',g',\mathcal{F}')$, we have

$$\begin{split} \frac{d^2}{dt^2} \tilde{E}_{B,2}(\phi_t;\Omega) \Big|_{t=0} &= -\int_{\Omega} \langle \nabla_V V, (\tilde{\tau}_2)_b(\phi) \rangle \mu_M + \int_{\Omega} |J_{\phi}^T(V)|^2 \mu_M \\ &- \int_{\Omega} \langle R^{Q'}(V,\tilde{\tau}_b(\phi))\tilde{\tau}_b(\phi), V \rangle \mu_M \\ &- 4\int_{M} \langle R^{Q'}(\nabla_{tr}V,\tilde{\tau}_b(\phi)) d_T \phi, V \rangle \mu_M \\ &+ \int_{\Omega} \langle (\nabla_{\tilde{\tau}_b(\phi)} R^{Q'})(V, d_T \phi) d_T \phi, V \rangle \mu_M \\ &+ 2\int_{\Omega} \langle (\nabla_{tr} R^{Q'})(d_T \phi, V) \tilde{\tau}_b(\phi), V \rangle \mu_M, \end{split}$$

where $V = \frac{d\phi_t}{dt}\Big|_{t=0}$ is the normal variation vector field of $\{\phi_t\}$.

Proof. Let $\Phi: M \times (-\epsilon, \epsilon) \to M'$ be a smooth map, which is defined by $\Phi(x, t) = \phi_t(x)$. Let ∇^{Φ} be the pull-back connection on $\Phi^{-1}Q'$. It is trivial that $[X, \frac{\partial}{\partial t}] = 0$ for any vector field $X \in TM$. From definition, we have

$$\frac{d^2}{dt^2}\tilde{E}_{B,2}(\phi_t;\Omega) = \int_{\Omega} \langle \nabla^{\Phi}_{\frac{d}{dt}} \nabla^{\Phi}_{\frac{d}{dt}} \tilde{\tau}_b(\phi_t), \tilde{\tau}_b(\phi_t) \rangle \mu_M + \int_{\Omega} |\nabla^{\Phi}_{\frac{d}{dt}} \tilde{\tau}_b(\phi_t)|^2 \mu_M.$$

Let $\{E_a\}$ be a local orthonormal basic frame on Q such that $\nabla^{\Phi} E_a = 0$ at $x \in M$. From (3.14), we have

$$\begin{split} \nabla^{\Phi}_{\frac{d}{dt}} \nabla^{\Phi}_{\frac{d}{dt}} \tilde{\tau}_b(\phi_t) &= \sum_a \nabla^{\Phi}_{E_a} \nabla^{\Phi}_{E_a} \nabla^{\Phi}_{E_a} \nabla^{\Phi}_{\frac{d}{dt}} d\Phi(\frac{d}{dt}) - \nabla^{\Phi}_{\kappa_B^{\sharp}} \nabla^{\Phi}_{\frac{d}{dt}} d\Phi(\frac{d}{dt}) + R^{\Phi}(\kappa_B^{\sharp}, \frac{d}{dt}) d\Phi(\frac{d}{dt}) \\ &+ \sum_a \nabla^{\Phi}_{E_a} R^{\Phi}(\frac{d}{dt}, E_a) d\Phi(\frac{d}{dt}) + \sum_a \nabla^{\Phi}_{\frac{d}{dt}} R^{\Phi}(\frac{d}{dt}, E_a) d\Phi(E_a) \\ &+ \sum_a R^{\Phi}(\frac{d}{dt}, E_a) \nabla^{\Phi}_{E_a} d\Phi(\frac{d}{dt}). \end{split}$$

At t=0, since $d\Phi(\frac{d}{dt})|_{t=0}=\frac{d\phi_t}{dt}|_{t=0}=V$, we have

$$\begin{split} \nabla^{\Phi}_{\frac{d}{dt}} \nabla^{\Phi}_{\frac{d}{dt}} \tilde{\tau}_b(\phi_t) \Big|_{t=0} &= \sum_a \nabla_{E_a} \nabla_{E_a} \nabla_V V - \nabla_{\kappa_B^{\sharp}} \nabla_V V + R^{Q'} (d_T \phi(\kappa_B^{\sharp}), V) V \\ &+ \sum_a \nabla_{E_a} R^{Q'} (V, d_T \phi(E_a)) V \\ &+ \sum_a \nabla_V R^{Q'} (V, d_T \phi(E_a)) d_T \phi(E_a) \\ &+ \sum_a R^{Q'} (V, d_T \phi(E_a)) \nabla_{E_a} V. \end{split}$$

By a straight calculation together with the Bianchi identities, we have

$$\begin{split} \sum_{a} \nabla_{E_{a}} R^{Q'}(V, d_{T}\phi(E_{a}))V &= \sum_{a} (\nabla_{E_{a}} R^{Q'})(V, d_{T}\phi(E_{a}))V + R^{Q'}(V, \tau_{b}(\phi))V \\ &+ 2 \sum_{a} R^{Q'}(V, d_{T}\phi(E_{a}))\nabla_{E_{a}} V \\ &- \sum_{a} R^{Q'}(V, \nabla_{E_{a}} V) d_{T}\phi(E_{a}) \end{split}$$

and

$$\begin{split} \sum_{a} \nabla_{V} R^{Q'}(V, d_{T}\phi(E_{a})) d_{T}\phi(E_{a}) &= \sum_{a} (\nabla_{V} R^{Q'})(V, d_{T}\phi(E_{a})) d_{T}\phi(E_{a}) \\ &+ \sum_{a} R^{Q'}(\nabla_{V} V, d_{T}\phi(E_{a})) d_{T}\phi(E_{a}) \\ &+ \sum_{a} R^{Q'}(V, \nabla_{E_{a}} V) d_{T}\phi(E_{a}) \\ &+ \sum_{a} R^{Q'}(V, d_{T}\phi(E_{a})) \nabla_{E_{a}} V. \end{split}$$

By summing the above equations, we have

$$\begin{split} \nabla_{\frac{d}{dt}} \nabla_{\frac{d}{dt}} \tilde{\tau}_b(\phi_t) \Big|_{t=0} &= -J_\phi^T(\nabla_V V) + R^{Q'}(V, \tilde{\tau}_b(\phi)) V \\ &+ \sum_a (\nabla_V R^{Q'})(V, d_T \phi(E_a)) d_T \phi(E_a) \\ &+ \sum_a (\nabla_{E_a} R^{Q'})(V, d_T \phi(E_a)) V \\ &+ 4 \sum_a R^{Q'}(V, d_T \phi(E_a)) \nabla_{E_a} V. \end{split}$$

Then by integrating, we get

$$\begin{split} \int_{\Omega} \langle \nabla^{\Phi}_{\frac{d}{dt}} \nabla^{\Phi}_{\frac{d}{dt}} \tilde{\tau}_b(\phi_t) \Big|_{t=0}, \tilde{\tau}_b(\phi) \rangle &= -\int_{\Omega} \langle J^T_{\phi}(\nabla_V V), \tilde{\tau}_b(\phi) \rangle \\ &+ \int_{\Omega} \langle R^{Q'}(V, \tilde{\tau}_b(\phi)) V, \tilde{\tau}_b(\phi) \rangle \\ &+ \sum_{a} \int_{\Omega} \langle (\nabla_V R^{Q'}) (V, d_T \phi(E_a)) d_T \phi(E_a), \tilde{\tau}_b(\phi) \rangle \\ &+ \sum_{a} \int_{\Omega} \langle (\nabla_{E_a} R^{Q'}) (V, d_T \phi(E_a)) V, \tilde{\tau}_b(\phi) \rangle \\ &+ 4 \sum_{a} \int_{\Omega} \langle R^{Q'}(V, d_T \phi(E_a)) \nabla_{E_a} V, \tilde{\tau}_b(\phi) \rangle. \end{split}$$

From the second Bianchi identity, we get

$$\langle (\nabla_{V} R^{Q'})(V, d_{T} \phi(E_{a})) d_{T} \phi(E_{a}), \tilde{\tau}_{b}(\phi) \rangle = \langle (\nabla_{E_{a}} R^{Q'})(V, d_{T} \phi(E_{a}))V, \tilde{\tau}_{b}(\phi) \rangle + \langle (\nabla_{\tilde{\tau}_{b}(\phi)} R^{Q'})(V, d_{T} \phi(E_{a})) d_{T} \phi(E_{a}), V \rangle.$$

From the above equation, we get

$$\begin{split} \int_{\Omega} \langle \nabla^{\Phi}_{\frac{d}{dt}} \nabla^{\Phi}_{\frac{d}{dt}} \tilde{\tau}_{b}(\phi_{t}) \Big|_{t=0}, \tilde{\tau}_{b}(\phi) \rangle &= -\int_{\Omega} \langle J^{T}_{\phi}(\nabla_{V}V), \tilde{\tau}_{b}(\phi) \rangle + \int_{\Omega} \langle R^{Q'}(V, \tilde{\tau}_{b}(\phi))V, \tilde{\tau}_{b}(\phi) \rangle \\ &+ \sum_{a} \int_{\Omega} \langle (\nabla_{\tilde{\tau}_{b}(\phi)} R^{Q'})(V, d_{T}\phi(E_{a})) d_{T}\phi(E_{a}), V \rangle \\ &+ 2 \sum_{a} \int_{\Omega} \langle (\nabla_{E_{a}} R^{Q'})(V, d_{T}\phi(E_{a}))V, \tilde{\tau}_{b}(\phi) \rangle \\ &+ 4 \sum_{a} \int_{\Omega} \langle R^{Q'}(V, d_{T}\phi(E_{a}))\nabla_{E_{a}} V, \tilde{\tau}_{b}(\phi) \rangle. \end{split}$$

From the above equation and (3.15), by using the curvature properties and self-adjointness of J_{ϕ}^{T} , the proof follows.

Definition 3.14. A $(\mathcal{F}, \mathcal{F}')$ -biharmonic map $\phi : (M, g, \mathcal{F}) \to (M', g', \mathcal{F}')$ is said to be weakly stable if $\frac{d^2}{dt^2} \tilde{E}_{B,2}(\phi_t)\Big|_{t=0} \geq 0$.

Now, we consider the generalized Chen's conjecture for $(\mathcal{F}, \mathcal{F}')$ -biharmonic map when the transversal sectional curvature of M' is positive, that is, $K^{Q'} > 0$. In case of $K^{Q'} \leq 0$, see Theorem 3.10.

Let us recall the transversal stress-energy tensor $S_T(\phi)$ of ϕ [4, 11]:

(3.31)
$$S_T(\phi) = \frac{1}{2} |d_T \phi|^2 g_Q - \phi^* g_{Q'}.$$

Note that for any vector field $X \in \Gamma Q$,

$$(3.32) \qquad (\operatorname{div}_{\nabla} S_{T}(\phi))(X) = -\langle \tau_{b}(\phi), d_{T}\phi(X) \rangle.$$

If $\operatorname{div}_{\nabla} S_T(\phi) = 0$, then we say that ϕ satisfies the transverse conservation law [4]. If there exists a basic function λ^2 such that $\phi^* g_{Q'} = \lambda^2 g_Q$, then ϕ is called a transversally weakly conformal map. In the case of λ being nonzero constant, ϕ is called a transversally homothetic map. Hence we have the following propositions.

Proposition 3.15. [7] Let $\phi:(M,g,\mathfrak{F})\to (M',g',\mathfrak{F}')$ be a transversally weakly conformal map with $codim(\mathfrak{F})>2$. Then ϕ is transversally homothetic if and only if ϕ satisfies the transverse conservation law.

Theorem 3.16. Let (M, g, \mathcal{F}) be a closed foliated Riemannian manifold and (M', g', \mathcal{F}') be a foliated Riemannian manifold with a positive constant transversal sectional curvature K^Q . Let $\phi: M \to M'$ be a $(\mathcal{F}, \mathcal{F}')$ -biharmonic map such that ϕ is transversally weakly stable and satisfies the transverse conservation law. If \mathcal{F} is minimal or ϕ is transversally weakly conformal with codim $\mathcal{F} > 2$, then ϕ is $(\mathcal{F}, \mathcal{F}')$ -harmonic.

Proof. Let $\phi: M \to M'$ be a $(\mathcal{F}, \mathcal{F}')$ -biharmonic map, that is, $(\tilde{\tau}_2)_b(\phi) = 0$. Let $K^{Q'} = c > 0$, where c is a positive constant. Then for any $X, Y, Z \in \Gamma Q'$

$$(3.33) R^{Q'}(X,Y)Z = c\{\langle Y,Z\rangle X - \langle X,Z\rangle Y\}.$$

So $(\nabla_X R^{Q'})(Y,Z)=0$. Hence if we take $V=\tilde{\tau}_b(\phi)$ in Theorem 3.13, then from (3.33)

$$\begin{split} \frac{d^2}{dt^2} \tilde{E}_{B,2}(\phi_t) \Big|_{t=0} &= -4 \int_M \langle R^{Q'}(\nabla_{tr} \tilde{\tau}_b(\phi), \tilde{\tau}_b) d_T \phi, \tilde{\tau}_b(\phi) \rangle \mu_M \\ &= -4c \int_M \langle \tilde{\tau}_b(\phi), d_T \phi \rangle \langle \nabla_{tr} \tilde{\tau}_b(\phi), \tilde{\tau}_b(\phi) \rangle \mu_M \\ &+ 4c \int_M \langle d_T \phi, \nabla_{tr} \tilde{\tau}_b(\phi) \rangle |\tilde{\tau}_b(\phi)|^2 \mu_M \\ &= -4c \int_M \langle \tau_b(\phi), \tilde{\tau}_b(\phi) \rangle |\tilde{\tau}_b(\phi)|^2 \mu_M \\ &+ 4c \sum_a \int_M E_a(\langle d_T \phi(E_a), \tilde{\tau}_b(\phi) \rangle |\tilde{\tau}_b(\phi)|^2) \mu_M \\ &- 12c \sum_a \int \langle d_T \phi(E_a), \tilde{\tau}_b(\phi) \rangle \langle \nabla_{E_a} \tilde{\tau}_b(\phi), \tilde{\tau}_b(\phi) \rangle \mu_M. \end{split}$$

If we choose a normal vector field X as

$$\langle X, Y \rangle = \langle \tilde{\tau}_b(\phi), d_T \phi(Y) \rangle |\tilde{\tau}_b(\phi)|^2$$

for any normal vector field Y, then

$$\operatorname{div}_{\nabla} X = \sum_{a} E_a(\langle \tilde{\tau}_b(\phi), d_T \phi(E_a) \rangle |\tilde{\tau}_b(\phi)|^2).$$

Hence by the transversal divergence theorem, we have

$$\int \sum_{a} E_{a}(\langle d_{T}\phi(E_{a}), \tilde{\tau}_{b}(\phi)\rangle |\tilde{\tau}_{b}(\phi)|^{2}) \mu_{M} = \int \operatorname{div}_{\nabla}(X) \mu_{M} = \int \langle X, \kappa_{B}^{\sharp} \rangle \mu_{M}$$
$$= \int \langle d_{T}\phi(\kappa_{B}^{\sharp}), \tilde{\tau}_{b}(\phi) \rangle |\tilde{\tau}_{b}(\phi)|^{2} \mu_{M}.$$

Combining the above equations, we have

$$\frac{d^2}{dt^2} \tilde{E}_{B,2}(\phi_t) \Big|_{t=0} = -4c \int_M |\tilde{\tau}_b(\phi)|^4 \mu_M
-12c \sum_a \int_M \langle \tilde{\tau}_b(\phi), d_T \phi(E_a) \rangle \langle \nabla_{E_a} \tilde{\tau}_b(\phi), \tilde{\tau}_b(\phi) \rangle \mu_M.$$

Since ϕ satisfies the transverse conservation law, that is, $(\operatorname{div}_{\nabla} S_T(\phi))(X) = 0$ for any X, we have

$$\langle \tau_b(\phi), d_T \phi(E_a) \rangle = (\text{div}_{\nabla} S_T(\phi))(E_a) = 0.$$

Moreover, since ϕ is transversally weakly conforml, from Proposition 3.15, ϕ is transversally homothetic. Hence

$$\sum_{a} \langle d_T \phi(\kappa_B^{\sharp}), d_T \phi(E_a) \rangle \langle \nabla_{E_a} \tilde{\tau}_b(\phi), \tilde{\tau}_b(\phi) \rangle = \alpha \langle \nabla_{\kappa_B^{\sharp}} \tilde{\tau}_b(\phi), \tilde{\tau}_b(\phi) \rangle$$

for some constant α . So if we choose the bundle-like metric such that $\delta_B \kappa_B = 0$, then

$$\int_{M} \sum_{a} \langle \tilde{\tau}_{b}(\phi), d_{T}\phi(E_{a}) \rangle \langle \nabla_{E_{a}} \tilde{\tau}_{b}(\phi), \tilde{\tau}_{b}(\phi) \rangle \mu_{M}$$

$$= -\alpha \int_{M} \langle \nabla_{\kappa_{B}^{\sharp}} \tilde{\tau}_{b}(\phi), \tilde{\tau}_{b}(\phi) \rangle \mu_{M}$$

$$= -\frac{\alpha}{2} \int_{M} \langle \delta_{B} \kappa_{B}, |\tilde{\tau}_{b}(\phi)| \rangle \mu_{M}$$

$$= 0.$$

Hence from (3.34), we have

(3.35)
$$\frac{d^2}{dt^2} \tilde{E}_{B,2}(\phi_t) \Big|_{t=0} = -4c \int |\tilde{\tau}_b(\phi)|^4 \mu_M.$$

In case \mathcal{F} is minimal, (3.35) also holds. Hence since ϕ is weakly stable and c > 0, we have $\tilde{\tau}_b(\phi) = 0$, that is, ϕ is $(\mathcal{F}, \mathcal{F}')$ -harmonic.

Remark 3.17. The generalized Chen's conjectures for the transversally biharmonic map have been studied in [11, 13] under some additional conditions such that the transversal Ricci curvature of M is nonnegative.

References

- [1] J. A. Alvarez López, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom., 10(1992), 179–194.
- [2] R. Caddeo, S. Montaldo and P. Piu, On biharmonic maps, Contemp. Math., 288(2001), 286–290.
- [3] B.-Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17(1991), 169–188.
- [4] Y. J. Chiang and R. Wolak, Transversally biharmonic maps between foliated Riemannian manifolds, Internat. J. Math., 19(2008), 981–996.

- [5] D. Domínguez, A tenseness theorem for Riemannian foliations, C. R. Acad. Sci. Paris Sér. I Math., 320(1995), 1331–1335.
- [6] S. Dragomir and A. Tommasoli, Harmonic maps of foliated Riemannian manifolds, Geom. Dedicata, 162(2013), 191–229.
- [7] X. Fu, J. Qian and S. D. Jung, *Harmonic maps on weighted Riemannian foliations*, arXiv:2212.05639v2 [math.DG].
- [8] M. P. Gaffney, A special Stokes' theorem for complete Riemannian manifold, Ann. of Math., 60(1954), 140–145.
- [9] G. Y. Jiang, 2-harmonic maps and their first and second variational formula, Chinese Ann. Math. Ser. A, 7(1986), 389–402.
- [10] S. D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys., **39**(2001), 253–264.
- [11] S. D. Jung, Variation formulas for transversally harmonic and biharmonic maps, J. Geom. Phys., 70(2013), 9–20
- [12] M. J. Jung and S. D. Jung, On transversally harmonic maps of foliated Riemannian manifolds, J. Korean Math. Soc., 49(2012), 977–991.
- [13] M. J. Jung and S. D. Jung, Liouville type theorems for transversally harmonic and biharmonic maps, J. Korean Math. Soc., **54**(2017), 763–772.
- [14] F. W. Kamber and P. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J., **34**(1982), 525–538.
- [15] J. J. Konderak and R. A. Wolak, Transversally harmonic maps between manifolds with Riemannian foliations, Q. J. Math., 54(2003), 335–354
- [16] P. March, M. Min-Oo and E. A. Ruh, *Mean curvature of Riemannian foliations*, Canad. Math. Bull., **39**(1996), 95–105.
- [17] A. Mason, An application of stochastic flows to Riemannian foliations, Houston J. Math., 26(2000), 481–515.
- [18] P. Molino, *Riemannian foliations*, Birkhuser Boston, Inc., Boston, MA, 1988, xii+339 pp.
- [19] N. Nakauchi, H. Urakawa and S. Gudmundsson, Biharmonic maps into a Riemannian manifold of non-positive curvature, Geom. Dedicata, 169(2014), 263– 272.
- [20] J. S. Pak and S. D. Jung, A transversal Dirac operator and some vanishing theorems on a complete foliated Riemannian manifold, Math. J. Toyama Univ., 16(1993), 97–108.
- [21] H. K. Pak and J. H. Park, Transversal harmonic transformations for Riemannian foliations, Ann. Global Anal. Geom., 30(2006), 97–105.

- [22] E. Park and K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math., 118(1996), 1249–1275.
- [23] P. Tondeur, Foliations on Riemannian manifolds, Springer-Verlag, New York, 1988, xii+247 pp.
- $[24]\,$ P. Tondeur, $Geometry\ of\ foliations,$ Monogr. Math. 90, Birkhuser Verlag, Basel, 1997, viii+305 pp.
- [25] S. T., Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25(1976), 659–670.
- [26] S. Yorozu and T. Tanemura, Green's theorem on a foliated Riemannian manifold and its applications, Acta Math. Hungar., **56**(1990), 239–245.