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ABSTRACT. In this paper, we prove the generalized Chen’s conjecture for (F,J)-
biharmonic maps, such maps are critical points of the transversal bienergy functional.

1. Introduction

On a Riemannian geometry, harmonic maps play a central role to study the
geometric properties. They are critical points of the energy functional E(¢) for
smooth maps ¢ : (M, g) — (M’,g'), where

BO) =5 [ 1o

where gy is the volume element. It is well known that harmonic map is a solution
of the Euler-Largrange equation 7(¢) = 0, where 7(¢) = try(Vd¢) is the tension
field.

In 1983, J. Eells and L. Lemaire extended the notion of harmonic map to bi-
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harmonic map, which is a critical points of the bienergy functional E5(¢), where

Ba0) = 5 [ 1m(@)Pun.

It is well-known [9] that harmonic maps are always biharmonic. But the converse
is not true. At first, B.Y. Chen [3] raised so called Chen’s conjecture and later, R.
Caddeo et al. [2] raised the generalized Chen’s conjecture. That is,

Generalized Chen’s conjecture: Fvery biharmonic submanifold of a Rieman-
nian manifold of non-positive curvature must be harmonic.

About the generalized Chen’s conjecture, Nakauchi et al. [19] showed the fol-
lowing.

Theorem 1.1. [19] Let (M, g) be a complete Riemannian manifold and (M',g') be
of non-positive sectional curvature. Then

(1) every biharmonic map ¢ : M — M’ with finite energy and finite bienergy
must be harmonic.

(2) In the case Vol(M) = oo, every biharmonic map with finite bienergy is har-
monic.

Now, we study the generalized Chen’s conjecture for biharmonic maps on foli-
ated Riemannian manifolds and extend Theorem 1.1 to foliations. Let (M, g, F) and
(M’,¢',3") be the foliated Riemannian manifolds. Let ¢ : M — M’ be a smooth fo-
liated map, that is, map preserving the leaves. Then ¢ is said to be (F, F)-harmonic
map [6] if ¢ is a critical point of the transversal energy Fp(¢), which is given by

Ep(¢) = %/M ldré|* 1,

where dr¢ = d¢|q is the differential map of ¢ restricted to the normal bundle @ of
F. From the first variational formula for the transversal energy functional [12], it
is trivial that (F,3F)-harmonic map is a solution of 7(¢) := 7,(¢) + dro(kp) = 0,
where 75(¢) = trqo(Virdr¢) is the transversal tension field and kp is the basic part
of the mean curvature form x of F.

The map ¢ is said to be (F,F’)-biharmonic map if ¢ is a critical point of the
transversal bienergy functional Ep »(¢), where

Ep(¢) = %/M 175(¢)* s

By the first variation formula for the transversal bienergy functional EB_]Q (¢) (The-
orem 3.7), we know that (F,F)-harmonic map is always (F, F’)-biharmonic. But
the converse is not true. So we prove the generalized Chen’s conjecture for (F,3")-
biharmonic map. That is, we prove the following theorem
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Theorem 1.2. (cf. Theorem 3.10) Let (M, g, F) be a foliated Riemannian manifold
and let (M',g',3") be of non-positive transversal sectional curvature KQl, that 1is,
K@ <0. Let ¢ : M — M’ be a (F,F")-biharmonic map. Then

(1) if M is closed, then ¢ is automatically (F,F")-harmonic;

(2) if M is complete with Vol(M) = oo and Ega(¢) < oo, then ¢ is (F,F")-
harmonic.

(3) If M is complete with Ep(¢) < oo and Epa(¢) < oo, then ¢ is (F,5)
-harmonic.

Remark 1.3. On foliations, there is another kinds of harmonic map, called
transversally harmonic map, which is a solution of the Eular-Lagrange equation
To(¢) = 0 [15]. Also, the transversally biharmonic map is defined [4], which is not
a critical point of the bienergy Epo(¢). Two definitions for harmonic maps are
equivalent when the foliation is minimal. The generalized Chen’s conjectures for
transversally biharmonic map have been proved in [11, 13].

2. Preliminaries

Let (M, g, ) be a foliated Riemannian manifold of dimension n with a foliation
F of codimension ¢(= n—p) and a bundle-like metric g with respect to F [18, 23]. Let
Q = TM/T3F be the normal bundle of F, where T'F is the tangent bundle of F. Let
go be the induced metric by g on Q, that is, gg = 0*(g|pg1), where o : Q — TF*
is the cnonical bundle isomorphism. Then gq is the holonomy invariant metric on
@, meaning that Lxgg = 0 for X € TJ, where L is the transverse Lie derivative
with respect to X. Let V¥ be the transverse Levi-Civita connection on the normal
bundle Q [23, 24] and R? be the transversal curvature tensor of V@ = V, which is
defined by R?(X,Y) = [Vx, Vy|— Vix,y] for any X, Y € I'TM. Let K@ and Ric%
be the transversal sectional curvature and transversal Ricci operator with respect
to V, respectively. Let Q5 (F) be the space of all basic r-forms, i.e., w € QF(F) if
and only if ¢(X)w = 0 and Lxw = 0 for any X € I'TF, where i(X) is the interior
product. Then Q*(M) = Q5(F) ® Q(F)* [1]. It is well known that xp is closed,
i.e., dkp = 0, where kp is the basic part of the mean curvature form « [1, 20] . Let
%1 Q(F) = QL "(F) be the star operator given by

¥w = (—1)(”_‘1)(‘1_” * (wAxg), weQRTF),

where Y5 is the characteristic form of F and * is the Hodge star operator associated
to g. Let (-,-) be the pointwise inner product on Q5 (F), which is given by

(w1, wa)V = wy A *wa,

where v is the transversal volume form such that v = x5. Let dp : QF(F) —
Q% 1(F) be the operator defined by

dpw = (—1)q(r+l)+1;(d3 — ,%B/\)%w,
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where dp = d|gx (). 1t is well known [22] that dp is the formal adjoint of dp with
respect to the global inner product. That is,

/(dw17w2>uM=/ (w1, 0Bwa) pins
M

M

for any compactly supported basic forms w; and ws, where py; = v A xg is the
volume element.

There exists a bundle-like metric such that the mean curvature form satisfies
dpkp = 0 on compact manifolds [5, 16, 17]. The basic Laplacian Ap acting on
05 (F) is given by

Ap =dgdp + dpdp.

Now we define the bundle map Ay : I'Q — I'Q for any Y € TM by
(2.1) AyS = LyS — Vys,

where Lys = 7[Y,Ys] for n(Ys) = s. It is well-known [14] that for any infitesimal
automorphism Y (that is, [V, Z] € T'TT for all Z € T'TF [14])

Ays = 7VYS7T(Y),

where w : TM — (@ is the natural projection and Y; is the vector field such that
7(Ys) = s. So Ay depends only on Y = 7(Y) and is a linear operator. Moreover,
Ay extends in an obvious way to tensors of any type on @ [14]. Then we have the
generalized Weitzenbock formula on Q5 (F) [10]: for any w € Q5 (F),

(2.2) Apw =V}, Vyw + F(w) + Am%w,
where F(w) =3_,, 0% A i(Ey)RP(Ey, E,)w and

(2.3) ViVaw ==Y Vi, pw+ V.

The operator V}, Vi, is positive definite and formally self adjoint on the space of
basic forms [10]. If w is a basic 1-form, then F(w)* = Ric%(w?). Now, we recall the
transversal divergence theorem on a foliated Riemannian manifold for later use.

Theorem 2.1. [26] Let (M, g,F) be a closed, oriented Riemannian manifold with
a transversally oriented foliation F and a bundle-like metric g with respect to F.
Then for a transversal infinitesimal automorphism X,

[ e = [ so(w(X). s

where divy s denotes the transversal divergence of s with respect to the connection

V.
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3. (¥,5)-Harmonic and Biharmonic Maps on Foliations

Let ¢ : (M,g,F) — (M’,g',F") be a smooth foliated map, i.e., dp(TF) C TF,
and Q% (F) = Q%(F) @ E be the space of E-valued basic r-forms, where E = ¢~1Q’
is the pull-back bundle on M. We define dr¢ : Q — Q' by

dr¢ :=7'odpoo.

Trivially, dr¢ € QL(E). Let V¢ and V be the connections on E and Q* @ E,
respectively. Then a foliated map ¢ : (M, g,F) — (M’,¢',F’) is called transversally
totally geodesic if it satisfies

(3.1) Vidr¢ =0,

where (Vidro)(X,Y) = (Vxdro)(Y) for any X,Y € T'Q. Note that if ¢ :
(M, 9,5) — (M',g¢',F") is transversally totally geodesic with d¢(Q) C @', then,
for any transversal geodesic v in M, ¢ o~y is also transversal geodesic. From now

on, we use V instead of all induced connections if we have no confusion. We define
dy : Qp(E) — Q51 (E) by

(3.2) dy(w®s)=dpw®s+ (—1)"wA Vs

for any s € T'E and w € Q5 (F). Let oy be a formal adjoint of dy with respect to
the inner product. Note that

(3.3) dv(drd) =0, dvdrd = —(¢) + dro(Kly),
where 7,(¢) is the transversal tension field of ¢ defined by
(3.4) (@) = trq(Vidrd).
The Laplacian A on Q5 (FE) is defined by
A =dydy + dvdy.

Moreover, the operator Ay is extended to Q% (E) as follows:

AxU = Lyl — Vx 0,
where Lx = dyi(X) + i(X)dy for any X € I'TM and i(X)(w® s) = i(X)w ® s.
Hence ¥ € Q5 (F) if and only if i(X)¥ =0 and Lx¥ = 0 for all X € T'TF. Then
the generalized Weitzenbock type formula (2.2) is extended to Q5 (E) as follows

[12]: for any ¥ € QR (E),

(3.5) AV = ViV U + A, W+ F(D),
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where Vi Vi is the operator induced from (2.3) and F(¥) = Z,b:l 0% N
i(Ep)R(Ep, E,)¥. Moreover, we have that for any ¥ € QL (E),

(36)  GARUP = (A,W) [V — (A, W, 9) — (F(¥),0).

3.1. (3,3")-harmonic maps

About this section, see [6]. Let Q be a compact domain of M. Then the
transversal energy functional of ¢ on € is defined by

(3.7 Bo(:9) = 5 [ larof.

Then Dragomir and Tommasoli [6] defined (F,F")-harmonic if ¢ is a critical point
of the transversal energy functional Ep(¢). Also, we obtain the first variational
formula [6, 12]
d -
(38) GEs@a)|_ =~ [ () Vi,
Q

t=0
where V' = 2¢|,_, is the normal variation vector field of a foliated variation {¢;}
of ¢ and

(3.9) (@) = (9) — dro(s)-
From (3.8), we have the following [6].

Proposition 3.1. A foliated map ¢ is (F,F")-harmonic map if and only if 7(¢) =
0.

Remark 3.2. (1) If ¢ : M — R is a basic function, then 7(¢) = —Ap¢p. So
(F,3")-harmonic map is a generalization of a basic harmonic function.

(2) On foliated manifold, there is another kinds of harmonic map, transvesally
harmonic map, which is a solution of the Euler-Lagrange equation 7,(¢) = 0 by
Konderak and Wolak [15]. But the transversally harmonic map is not a critical
point of the energy functional Ep(¢). Two definitions are equivalent when the
foliation is minimal.

Now, we define the transversal Jacobi operator Jg T 1Q' = To 'Q by

(3.10) JL(V) =V, ViV — trqR? (V. dro)dro.
Then J¢T is a formally self-adjoint operator. That is, for any V,W € T'¢~1Q’,
(3.11) | E Wi = [ s

Also, we have the second variation formula for the transversal energy functional

Eg(¢).
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Theorem 3.3. ([6], The second variation formula) Let ¢ : (M, g,F) — (M',¢',F")
be a (F,F")-harmonic map and let {¢s1} be the foliated variation of ¢ supported in
a compact domain Q). Then

32
0sot

(3.12) Ep(ds4:€2)

= [ JTW), W),
e = T W
where V and W are the variation vector fields of ¢ ;.

Proof. Let V = &g:“ an a‘gi" be the variation vector
(s,t)=(0,0) (s,t)=(0,0)

fields of ¢, ;. Let @ : M X (—¢,€) X (—¢,€) — M’ be a smooth map, which is defined
by ®(x,s,t) = ¢s+(z). Let V® be the pull-back connection on ®~1Q’. It is trivial

that [X, %] =X, %] = 0 for any vector field X € TM. From (3.8), we have

82 0 ¢st s, -
a ot ((bs ts ):_/< 8¢8tt Tb (bst MM — / (b t’ %Tb((bs,t»MM

At (s,t) = (0,0), the first term vanishes because of 7,(¢) = 0. So

62

(3.13) 9501

EB(d)s,t; Q)

- /<Wv R -
Q

(s,t)=(0,0) ,t)=(0,0)

At x € M, by a straight calculation, we have

(3.14)
0
> o @ 2(
varbqsg Zv VEAD(5) = VI dP (o +ZR dt dD(E,).
Hence at (s,t) = (0,0), we have
d ~ N v A Q'
V%Tb(¢s’t)‘(s7t):(07o) =~V ViV + 1R (V,dr¢)dre.

That is, we have

1 5 F S = — T .
(3.15) V%Tb((i) ,t) (5:)=(0,0) J¢ (V)
Hence the proof of (3.12) follows from (3.13) and (3.15). O

Now, we define the basic Hessian Hessg of ¢ by
(3.16) Hessy (V,W) = /M<J¢T (V), W) pars.
Then Hessz;(V, W) = Hessg;(VV, V) for any V,W € ¢~ 1Q’. If Hessg is positive

semi-definite, that is, H essg(V, V) > 0 for any normal vecor field V' along ¢, then
¢ is said to be weakly stable. Hence we have the following corollary.
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Corollary 3.4. ([6], Stability) Let M be a closed Riemannian manifold and M’
be of non-positive transversal sectional curvature. Then any (F,F')-harmonic map
¢: (M, F) = (M',F") is weakly stable.

Remark 3.5. For the stability of transversally harmonic map (that is, 7,(¢) = 0),
see [11, Corollary 4.6]. In fact, under the same assumption, a transversally harmonic
map is transversally f-stable, that is, fM<(J$ — VMB)V, Vye=Fpup > 0, where f is
a basic function such that kg = —df.

3.2. (3,3")-biharmonic maps

We define the transversal bienergy functional EB,Q (¢) on a compact domain §2
by

(317) B0 9) = 5 [ [0

Definition 3.6. A foliated map ¢ : (M,g,F) — (M’,¢’,F’) is said to be (F,F)-

biharmonic map if ¢ is a critical point of the transversal bienergy functional Ep 2(¢).

Theorem 3.7. (The first variation formula) For a foliated map ¢,

d - -
(318) GEpa(0s )| == [ UZ @) Vi,
where V = % is the variation vector field of a foliated variation ¢, of ¢.

Proof. Let ® : M x (—e,e) — M’ be a smooth map, which is defined by ®(x,t) =
=0

#¢(x). Let V® be the pull-back connection on ®~1Q’. Tt is trivial that [X, %]
for any vector field X € TM. From (3.17), we have
d - & -~ .
(3.19) S Be205 Q)| _ = [ (VEA@)]0,7(6)) uar-
t=0 Q dt
From (3.11), (3.15) and (3.19), we finish the proof. O

From the first variation formula for the transversal bienergy functional, we know
the following fact.

Proposition 3.8. A (F,F')-biharmonic map ¢ is a solution of the following equa-
tion

(3.20) (72)b(0) := J§ (75()) = 0.
Here (72)p(@) is called the (F,F')-bitension field of ¢.
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Remark 3.9. (1) From Remark 3.2, if ¢ is a basic function on M, then

(72)5(8) = JI (75(8)) = —JL (Apo) = —V;. Vi (Apd) = AL .

So (F,F’)-biharmonic map is a generalization of basic biharmonic function.

(2) A (F,F")-harmonic map is trivially (&, F’)-biharmonic map.

(3) There is another kinds of biharmonic map on foliations, called transversally
biharmonic map, which is a solution of (72)y(¢) := Jg;(rb(@) - vnﬁBTb(¢) =0
[11]. Actually, transversally biharmonic map is a critical point of the transversal
f-bienergy functional Es ;(¢), which is defined by

Bay(@) =5 [ Im@)Pe

where f is a solution of kg = —df.

3.3. Generalized Chen’s conjecture

Now, we consider the generalized Chen’s conjecture for (F,F’)-biharmonic
maps.

Theorem 3.10. Let (M, g,F) be a foliated Riemannian manifold and let (M, g’,F")
be of non-positive transversal sectional curvature, that is, K < 0. Let¢: M — M’
be a (F,F")-biharmonic map. Then

(1) if M is closed, then ¢ is automatically (F,F")-harmonic;

(2) if M is complete with Vol(M) = co and Epa(¢) < oo, then ¢ is (F,5)-
harmonic;

(3) If M is complete with Ep(¢) < oo and Epa(¢) < oo, then ¢ is (F,57)
-harmonic.

Proof. Let ¢ : M — M’ be a (F,3")-biharmonic map. Then from (3.20)

(3.21) (Vo) (Vi) 7(0) = Y R (7(9), drd(Ea))dr¢(Ea) =0,

where {E,} be a local orthonomal basic frame of Q. From the generalized Weitzen-
bock formula (3.5) and (3.6), we have

(3.22) %ABI%b(fﬁ)l2 = (Vi Vi (0), 7(9)) — [VerTo(0) .

Hence from (3.21), we get

SB[ = (V@) + AR (1(6), dro(Ba))dro(E.), 7(6).
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That is,

17(0)|AB|7(8)| = |dB|7(d)]|* — [VirTu()]?
(3.23) + > (R (74(9), dr $(Ea))drd(Ea), 7(6)).

By the Kato’s inequality, that is, |V;,.7(¢)| > |dp|7(¢)||, and K9 < 0, we have

(3:24) SAsla6)] <0

That is, |75(#)] is basic subharmonic.
(1) If M is closed, then |7(¢)]| is trivially constant. From (3.23), we have that
for all a,

(3.25) Ve, 7(¢) = 0.

Now, we define the normal vector field Y by

Y= Z<dT¢(Ea)a 7~_b(¢)>Ea

Then from (3.25), we have

(3.26) dive (V) =Y (VE,Y, Ea) = (1(6), 7(0)).

a

So by integrating (3.26) and by using the transversal divergence theorem (Theorem
2.1), we get

(3.27) /M 170() 2 1as = 0,

which implies that 7,(¢) = 0, that is, ¢ is the (F,F’)-harmonic map.

(2) Let M be a complete Riemannian manifold. Note that for any basic 1-form
w, it is trivial that dpw = dw and so Apf = Af for any basic function f. Hence
by the Yau’s maximum principle [25, Theorem 3], we have following lemma.

Lemma 3.11. If a nonnegative basic function f is basic-subharmonic, that is,
Apf <0, with [,, f* < oo (p>1), then f is constant.

Since Ep 2(¢) < oo, by (3.24) and Lemma 3.11, |7,(¢)| is constant. Moreover,
since Vol(M) = oo, [, [78(¢)]Ppm < oo implies 7(¢) = 0, that is, ¢ is (F,F)-
harmonic.

(3) Now we define a basic 1-form w on M by

(3.28) W(X) = (drd(X), 7(9))
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for any normal vector field X. By using the Schwartz inequality, we get

[ et = [ (St
-/, (2 (6B, A O)P) as

a

< /M (drl17(9) 1t

< (/M |dT¢|2MM)é(/M |7:b(¢)‘2MM)%
= 2\/EB(¢)EB72(¢) < 00.

On the other hand, by a straight calculation, we know that
(3.29) Spw = —|7(9)[*.

Since [, |w|par < 0o and [, (65)wpn = —Ep 2(00) < 0o, by the Gaffney’s theorem
[8], we know that

(3.30) /N 170 Prans = - /M(agww [ G =0,

M
Hence 7,(¢) = 0, that is, ¢ is (F,F’)-harmonic. O

Remark 3.12. Note that for transversally biharmonic map, we need some condi-
tions that the transversal Ricci curvature of M is nonnegative and positive at some
point (cf. [11, Theorem 6.5]).

Now, we study the second variation formula for the transversal bienergy func-
tional Ep 2(¢).
Theorem 3.13. (The second variation formula) For a foliated map ¢ : (M, g,F) —
(M, ¢',3"), we have
2

iEB,2(¢t; Q)

s :—/Q<VVV,(7:2)b(¢)>MM+/Q|J$(V)I2MM

-
- /Q<RQ’<V, F(6)70(6), V) ias
4 /M<RQ’ (Ve V, 70(6)) s, Vipias
T / (Vo) R )V, drd)drd, Vipias
Q
Lo /Q (VR ) (drd, V)7 (6), Visiar,

where V = % is the normal variation vector field of {¢:}.
t=0



604 X. S. Fuand S. D. Jang

Proof. Let ® : M x (—¢,€) = M’ be a smooth map, which is defined by <I>(:E t) =
¢u(z). Let V® be the pull-back connection on ®~1Q’. It is trivial that [X, &] =0
for any vector field X € TM. From definition, we have

2

P2 -
aEpa(0s®) = [ (4 V% A0, Ao + [ 19550

Let {E,} be a local orthonormal basic frame on @ such that V*E, =0 at x € M.
From (3.14), we have

v‘li, V‘I’ AD( d -) + R (K, i)d@(jt

d
VLV () ZV‘I’ VE, VG d( >

yriie )

d d
o pd ¢ pd
+ E Vi, R (dt a)d@(—dt)+ Ea V;ﬁR (—dt,Ea)dCI)(Ea)

d

+ZR‘I’ E)VE (A2 ().

At t =0, since d®(4)|—o = %hzo =V, we have

V vdTb(¢t

ZVE Ve, VyV -V quV‘f'RQ (dro(Kly), V)V
ZVE RV, dr¢(Ea))V
ZWR (V.dr¢(Eq))dré(Ea)

+ Z R (V,dr¢(Ea))Vg,V.

By a straight calculation together with the Bianchi identities, we have

ZVE RO (V,dro(E,))V = Z (Ve RY)(V,drd(Ea))V + R? (V.(6))V
+2ZRQ (V,drd(Ea))VE,V

=Y RV, Vg, V)dre(E,)
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and

D> VR (V,drd(Ea))dré(Ea) = 3 (Vv RY)(V, drd(Fa))dr(Fa)
—+ Z RQI (VV‘/, dT¢(Ea))dT¢(Ea)
+Y RE(V.VE,V)dré(E,)

+3 RV, dr¢(Ea)Ve, V.

By summing the above equations, we have

=~ JL(VyV) + RY(V, 7(4)V

+ 3 (Vv RV, dr(Ea))drd(Ea)

V.aV.a7y(dr)

t=0

+ Y (Ve RY) (V. dr¢(Ea))V

+4 Z ROV, dr¢(Ea)VE,V.
Then by integrating, we get

dt  dt t=0

/Q<v‘gv‘iﬁ,(¢t) 7(9)) =—/Q<J$(Vvv)fb(¢)>
+ [ v ae)
D3 /Q (VvR) (V. drd(Ea))drd(Ea), ()
+;/Q<(VEQRQ/)(V7dTQS(Ea))‘/v%b((b»

"s /Q (R? (V. dr$(Ea)) Vs, V. 7(9)).

From the second Bianchi identity, we get

(Vv RNV, dré(Ea))dré(Ea), 7(8)) =((Vi, RO )V, dré(E)V, 7(4))
+ (Va, () RY)(V, drd(Ea))drd(Ea), V).
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From the above equation, we get

/ vV A6 ) = - / T (Vv V), B(6)) + / (R? (V. 7(8))V. 70(8))
Q g = Q

Q

+3 / (Vor iy B2 )V, drd(Ea))dr (), V)
w2} (TR V. dro(B)V. (@)
+4Z/ "V, drd(Ea))V i, V, ().

From the above equation and (3.15), by using the curvature properties and self-
adjointness of J;ﬂ the proof follows. O

Definition 3.14. A (F,3’)-biharmonic map ¢ : (M, g,F) — (M’,¢',F’) is said to
be weakly stable if %EEQ(@)‘ > 0.
t=0
Now, we consider the generalized Chen’s conjecture for (F,3’)-biharmonic map
when the transversal sectional curvature of M’ is positive, that is, K¢ > 0. In case
of K9 <0, see Theorem 3.10.
Let us recall the transversal stress-energy tensor St(¢) of ¢ [4, 11]:

1 *
(3.31) Sr(¢) = §|dT¢|29Q — 9" 9qr-
Note that for any vector field X € I'Q,

(3.32) (dive S(9))(X) = =(1(¢), drd(X)).

If divySr(¢) = 0, then we say that ¢ satisfies the transverse conservation law
[4]. If there exists a basic function A\? such that ¢* 9o = Ang, then ¢ is called a
transversally weakly conformal map. In the case of A being nonzero constant, ¢ is
called a transversally homothetic map. Hence we have the following propositions.

Proposition 3.15. [7] Let ¢ : (M,9,F) — (M',g',F") be a transversally weakly
conformal map with codim(F) > 2. Then ¢ is transversally homothetic if and only
if ¢ satisfies the transverse conservation law.

Theorem 3.16. Let (M,g,F) be a closed foliated Riemannian manifold and
(M',¢',3") be a foliated Riemannian manifold with a positive constant transver-
sal sectional curvature KQ'. Let ¢ : M — M’ be a (F,F)-biharmonic map such
that ¢ is transversally weakly stable and satisfies the transverse conservation law.
If F is minimal or ¢ is transversally weakly conformal with codim3 > 2, then ¢ is

(F,F")-harmonic.
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Proof. Let ¢ : M — M’ be a (F,F)-biharmonic map, that is, (72),(¢) = 0. Let
K@ = ¢ >0, where c is a positive constant. Then for any X,Y,Z € T'Q’

(3.33) RY(X,Y)Z = c{{Y, 2)X — (X, Z)Y}.

So (VxR?)(Y,Z) = 0. Hence if we take V = 7(¢) in Theorem 3.13, then from
(3.33)

az -
ﬁEBQ(@)L:

o 4/M<RQ,(V”%1)(¢), To)dr @, To(P)) i
Ny /M<%b(¢), drd) (Ver#y(0), 7o) pinr
e /M<dT¢,vtr%b(¢>>|%b(¢>\2w
_ 40/ (70(8), 7(@))70(8) Prias

ZO3 / (dro(Ea), 7(6)7(@))as
12y [ (ro(E), 7)Y, 7)o@

If we choose a normal vector field X as

(X,Y) = (7(0),dro(Y)|7(0)

for any normal vector field Y, then
dive X =Y Eu((7(0), drd(Ea))|7(¢)]%)-
Hence by the transversal divergence theorem, we have
/ 5 Balldrd(Ea). (o) (6) hnas = [ e = [ i

= [ (o). 7o) 70 Prar
Combining the above equations, we have
d2
p7e) 132(/)15 o 2—40/ |76 ()" s

(3.34) 12y / 0), drd(Ea)) (Y 5, 70(6), 7(0) s
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Since ¢ satisfies the transverse conservation law, that is, (divySt(¢))(X) = 0 for
any X, we have

(1(0), dr¢(Ew)) = (dive S7(9))(Ea) = 0.

Moreover, since ¢ is transversally weakly conforml, from Proposition 3.15, ¢ is
transversally homothetic. Hence

Y (drd(rl), drd(Ea)) (Ve 70(0), 7o(9)) = (V1 7(9), 7(9))

a

for some constant «. So if we choose the bundle-like metric such that dgxp = 0,
then

/MZ<ﬁ,<¢>,dT¢<Ea>><vEﬁb<¢>,%b<¢>>uM

——a [ (¥, 7(0). 7(@)a
M

et -
=5 [ Guwn, (@)
M
=0.
Hence from (3.34), we have

&> -
(3.35) JEp2(d0)

- / 170 .

t=0

In case F is minimal, (3.35) also holds. Hence since ¢ is weakly stable and ¢ > 0,
we have 7(¢) = 0, that is, ¢ is (F,F’)-harmonic. O

Remark 3.17. The generalized Chen’s conjectures for the transversally biharmonic
map have been studied in [11, 13] under some additional conditions such that the
transversal Ricci curvature of M is nonnegative.
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