DOI QR코드

DOI QR Code

Generalized k-Balancing and k-Lucas Balancing Numbers and Associated Polynomials

  • Kalika Prasad (Department of Mathematics, Central University of Jharkhand) ;
  • Munesh Kumari (Department of Mathematics, Central University of Jharkhand) ;
  • Jagmohan Tanti (Department of Mathematics, Babasaheb Bhimrao Ambedkar University)
  • 투고 : 2023.02.07
  • 심사 : 2023.08.09
  • 발행 : 2023.12.31

초록

In this paper, we define the generalized k-balancing numbers {B(k)n} and k-Lucas balancing numbers {C(k)n} and associated polynomials, where n is of the form sk+r, 0 ≤ r < k. We give several formulas for these new sequences in terms of classic balancing and Lucas balancing numbers and study their properties. Moreover, we give a Binet style formula, Cassini's identity, and binomial sums of these sequences.

키워드

참고문헌

  1. A. Behera and G. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37(1999), 98-105.
  2. M. El-Mikkawy and T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput., 215(12)(2010), 4456-4461. https://doi.org/10.1016/j.amc.2009.12.069
  3. R. Frontczak, On balancing polynomials, Appl. Math. Sci., 13(2)(2019), 57-66. https://doi.org/10.12988/ams.2019.812183
  4. R. Frontczak and T. Goy, Lucas-Euler relations using balancing and Lucas-balancing polynomials, Kyungpook Math. J., 61(3)(2021), 473-486.
  5. R. Frontczak and K. Prasad, Balancing polynomials, Fibonacci numbers and some new series for π, Mediterr. J. Math., 20(4)(2023), Article No. 207.
  6. T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc., New York(2001).
  7. M. Kumari, J. Tanti, and K. Prasad. On some new families of k-Mersenne and generalized k-Gaussian Mersenne numbers and their polynomials. Contrib. Discrete Math., 18(2)(2023).
  8. E. Ozkan, I. Altun and A. Gocer, On relationship among a new family of k-Fibonacci, k-Lucas numbers, Fibonacci and Lucas numbers, Chiang Mai J. Sci., 44(2017), 1744-1750.
  9. A. Ozkoc and A. Tekcan, On k-balancing numbers, Notes Number Theory Discrete Math., 23(3)(2017), 38-52.
  10. P. K. Ray, Balancing polynomials and their derivatives, Ukr. Math. J., 69(4)(2017), 646-663. https://doi.org/10.1007/s11253-017-1386-7
  11. P. K. Ray, On the properties of k-balancing and k-Lucas-balancing numbers, Acta Comment. Univ. Tartu. Math., 21(2)(2017), 259-274. https://doi.org/10.12697/ACUTM.2017.21.18
  12. S. Rayaguru and G. Panda, Sum formulas involving powers of balancing and Lucas-balancing numbers - II, Notes Number Theory Discrete Math., 25(3)(2019), 102-110. https://doi.org/10.7546/nntdm.2019.25.3.102-110
  13. S. Vajda, Fibonacci and Lucas numbers, and the golden section: theory and applications, Courier Corporation(2008).