DOI QR코드

DOI QR Code

A Study on Electrode Array for Measurement of Induced Polarization of Rock Samples

암석 시료의 유도분극 측정을 위한 전극배열 비교

  • Man-ho Han (Disposal Technology Team, HLW Technology Development Institute, Korea Radioactive Waste Agency) ;
  • Jung-hwan Lee (Disposal Technology Team, HLW Technology Development Institute, Korea Radioactive Waste Agency) ;
  • Keun-Soo Lee (Water Infrastructure Safety Research Center, K-water Research Institute) ;
  • Myeong-Jong Yi (Mineral Exploration and Mining Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 한만호 (한국원자력환경공단 고준위기술개발원) ;
  • 이정환 (한국원자력환경공단 고준위기술개발원 ) ;
  • 이근수 (한국수자원공사 K-water연구원 미래인프라연구팀 ) ;
  • 이명종 (한국지질자원연구원 자원탐사개발연구센터)
  • Received : 2023.11.17
  • Accepted : 2023.12.18
  • Published : 2023.12.31

Abstract

Measurement of the physical properties of rocks or minerals is an important factor in determining the distribution of the underground medium as well as mineral resource investigations. Resistivity and induced polarization, which are widely used in Korea, are methods for measuring electrical properties, which are representative properties of obtaining subsurface information. In order to precisely analyze the exploration data obtained from various sites, it is important to accurately measure the material properties. Electrical properties of rock is measured using two-electrode or four-electrode method. Compared to the four-electrode method, the two-electrode method is generally used because it is very easy to contact the sample and the electrode, but there is a problem in that the impedance of the electrode and the sample is measured together. In this study, the time-domain the induced polarization effects were measured using the 2-electrode method and the 4-electrode method for artificial samples mixed with graphite and cement having induced polarization characteristics, and the results were compared. Although the 4-electrode method has difficulties in installing potential electrodes, it was confirmed that it is effective in measuring electrical properties because it can reduce the problem caused by the impedance of potential electrodes compared to the 2-electrode method.

국내에서 널리 사용되는 전기비저항과 유도분극탐사는 지하 매질 정보를 얻는 대표적인 물성인 전기적 성질을 측정하는 방법이다. 다양한 현장에서 획득하는 탐사 자료에 대한 정밀한 해석을 위해서는 매질의 물성 정보를 정확하게 측정하는 것이 중요하다. 암석의 전기적 물성 측정은 전류 전극과 전위 전극을 동일한 전극으로 사용하는 2전극법과 전류 전극과 전위 전극을 분리하여 측정하는 4전극법으로 구분된다. 2전극법은 4전극법에 비해 시료와 전극의 접촉이 매우 용이하므로 일반적으로 많이 사용되고 있지만, 시료뿐만 아니라 전극의 임피던스가 함께 측정된다는 문제가 있다. 이 연구에서는 유도분극 특성을 갖지 않는 물시료와 유도분극 특성을 갖는 흑연과 시멘트를 혼합한 인공 시료에 대하여 2전극법과 4전극법을 사용하여 시간영역 유도분극 효과를 측정하고 그 결과를 비교하였다. 또한, 현장탐사를 모사한 수조모형 실험으로 두 전극법의 결과와 비교하여, 모형실험과 4전극법의 결과가 잘 일치하는 것을 확인하였다. 따라서, 4전극법이 전위전극의 설치에 어려움이 있지만 2전극법에 비해 전위전극의 임피던스에 의한 문제를 줄일 수 있어 전기적 물성 측정에 효과적임을 확인하였다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(산업통상자원 부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국에너지기술평가원의 지원을 받아 수행된 연구사업이다(2021040101003A).

References

  1. Binley, A. and Slater, L., 2020, Resistivity and induced polarization: Theory and applications to the near-surface earth, Cambridge University Press, p. 104
  2. Binley, A., Slater L.D., Fukes M., and Cassiani G., 2005, Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone, Water Resour. Res., 41, W12417.
  3. Borner, F.D., Schopper, J.R., and Weller, A., 1996, Evaluation of transport and storage preoperties in the soil and groundwater zone from induced polarization measurements, Geophysical Prospecting, 44, 583-601. https://doi.org/10.1111/j.1365-2478.1996.tb00167.x
  4. Gomaa, M.M., Alikaj, P., 2009, Effect of electrode contact impedance on a. c. electrical properties of wet hematite sample. Mar Geophys Res., 30(4), 265-276. https://doi.org/10.1007/s11001-010-9092-y
  5. Kearey, P., Brooks M., and Hill I., 2002, An Introduction to Geophysical Exploration 3rd edition, Blackwell Science, 183-203.
  6. Kemna, A., Binley, A., Cassiani, G., Niederleithinger, E., Revil, A., Slater, L., Williams, K.H., Flores Orozco, A., Haegel, F.H., Hordt, A., Kruschwitz, S., Leroux, V., Titov, K., and Zimmermann, E., 2012, An overview of spectral induced polarization method for near-surface application, Near Surf. Geophys., 10, 453-468. https://doi.org/10.3997/1873-0604.2012027
  7. Kim, J.H., 2009, DC2DPro-2D interpretation system of DC Resistivity Tomography. User's Manual and Theory: Korean Institute of Geoscience and Mineral Resources: Daejeon.
  8. Olhoeft, G.R., 1985, Low-frequency electrical properties, Geophysics, 50, 145-162. https://doi.org/10.1190/1.1441880
  9. Paik, W.K. and Park, S.M., 2012, Electrochemistry(Science and Technology of Electrode Processes), Third edition, Republic of Korea: KYOMUNSA(cheongmoongak).
  10. Palacky, G.V. 1987, Resistivity characteristics of geologic targets, in Electromagnetic Methods in Applied Geophysics, 1, 1351.
  11. Park, S.G., 2004, Physical Property Factors Controlling the Electrical Resistivity of Subsurface, Geophysics and Geophysical Exploration, 7(2), 130-135.
  12. Pelton, W.H., Ward, S.H., Hallof, P.G., Sill, W.R., and Nelson, P.H., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophysics, 43(3), 588-609. https://doi.org/10.1190/1.1440839
  13. Revil, A. and Florsch, N., 2010, Determination of permeability from spectral induced polarization in granular media: Geophysical Journal International, 181(3), 1480-1498. https://doi.org/10.1111/j.1365-246X.2010.04573.x
  14. Rust, C.F., 1952, Electrical Resistivity Measurements on Reservoir Rock Samples by the Two-Electrode and Four-Electrode Methods, J Pet Technol., 4(09), 217-224. https://doi.org/10.2118/952217-G
  15. Schwan, H.P., 1968, Electrode polarization impedance and measurements in biological materals: Annals of the New York Academy of Sciences, 148, 191-209. https://doi.org/10.1111/j.1749-6632.1968.tb20349.x
  16. Seigel, H.O., 1959, Mathematical formulation and type curve for induced polarizaion, Geophysics, 24(3), 547-565. https://doi.org/10.1190/1.1438625
  17. Telford, W.M, Geldart, L.P., and Sheriff, R.E., 1990, Applied Geophysics 2nd Edition, Cambridge: Cambridge University Press.
  18. Ulrich, C. and Slater, L.D., 2004. Induced polarization measurements on unsaturated, unconsolidated sands. Geophysics. 69(3), 762-771. https://doi.org/10.1190/1.1759462
  19. Vanhala, H. and Soininen, H., 1995, Laboratory technique for measurement of spectral induced polarization response of soil samples, Geophysical Prospecting, 43(5), 655-676. https://doi.org/10.1111/j.1365-2478.1995.tb00273.x
  20. Ward, S.H., Sternberg, B.K., LaBrecque, D.J. and Poulton, M.M., 1995. Recommendations on IP research. The Leading Edge, 14, 243-247. https://doi.org/10.1190/1.1437120
  21. Zisser, N., Kemna, A., and Nover, G., 2010, Relationship between low-frequency electrical properties and hydraulic permeability of low-permeability sandstones, Geophysics, 75(3), E131-E141. https://doi.org/10.1190/1.3413260