DOI QR코드

DOI QR Code

치악산 편마암 지질의 지하수 내 자연 방사성 원소의 거동 특성 연구: 인공풍화 실험을 통한 광물학적 해석

Characterization of the Behavior of Naturally Occurring Radioactive Elements in the Groundwater within the Chiaksan Gneiss Complex : Focusing on the Mineralogical Interpretation of Artificial Weathering Experiments

  • 이우춘 ((주)호성 HS환경기술연구소) ;
  • 이상우 ((주)호성 HS환경기술연구소) ;
  • 김형규 (공주대학교 지질환경과학과) ;
  • 정도환 (국립환경과학원 환경기반연구부 토양지하수연구과) ;
  • 김문수 (국립환경과학원 환경기반연구부 토양지하수연구과) ;
  • 김현구 (국립환경과학원 환경기반연구부 토양지하수연구과) ;
  • 김순오 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소)
  • Woo-Chun Lee (HS Environmental Technology Research Center, Hosung Inc.) ;
  • Sang-Woo Lee (HS Environmental Technology Research Center, Hosung Inc.) ;
  • Hyeong-Gyu Kim (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Do-Hwan Jeong (Soil & Groundwater Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research (NIER)) ;
  • Moon-Su Kim (Soil & Groundwater Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research (NIER)) ;
  • Hyun-Koo Kim (Soil & Groundwater Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research (NIER)) ;
  • Soon-Oh Kim (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University)
  • 투고 : 2023.11.23
  • 심사 : 2023.12.19
  • 발행 : 2023.12.30

초록

본 연구지역은 강원도 횡성군 강림리로 치악산 편마암 지질에 해당된다. 본 연구지역의 지하수에서 우라늄 및 라돈 등과 같은 자연 방사성 원소의 농도가 규제기준을 초과한 것으로 조사되었다. 이에 해당 지하수 대수층에서 획득한 시추 코어를 대상으로 자연 방사성 원소의 용출 기작을 광물학적으로 규명하기 위해 인공풍화 실험을 수행하였다. 이를 위해 먼저 시추 코어시료의 실험 전 광물학적 특성을 분석한 결과, 저온 및 중온 열수 변성 작용을 받아 생성될 수 있는 녹니석계 클리노클로어의 함량이 높게 나타났다. 또한, 우라늄보다 토륨의 함량이 10배 정도 높은 것으로 확인되었다. 인공풍화 실험 결과, 함방사성원소 광물의 용해에 따라 1일 이내에 토륨의 농도가 증가하는 양상을 보이다가 그 이후에는 농도가 감소하는 경향을 보였다. 이는 이차광물 형태로 존재하는 토라이트의 용해에 의하여 토륨이 용출된 후, 황산염 등과 같은 형태로 재침전되기 때문인 것으로 판단된다. 시추 코어 내 우라늄의 함량이 토륨보다 낮지만, 풍화 실험 결과에서는 토륨보다 100배 이상의 농도로 용출된 것으로 확인되었다. 이는 우라늄이 풍화가 많이 된 토라이트에 함유되어 있거나 UO22+ 등의 이온 형태로 광물 표면에 흡착된 상태로 존재하면서 지속적으로 용해 또는 탈착되기 때문이다. 또한 토륨과 우라늄의 용출 양상은 탄산염의 농도와 양의 상관관계를 갖는 것으로 나타났다. 하지만, 지하수 내 토륨과 우라늄의 농도 사이의 상관성은 낮은 것으로 조사되었는데, 이는 앞서 설명한 바와 같이 두 원소가 다른 기원으로부터 지하수에 용출되기 때문인 것으로 판단된다. 두 방사성 원소의 용출속도는 다양한 반응속도 모델 중 Parabolic diffusion와 Pseudo-second order kinetic 모델에 의해 가장 잘 모사되는 것으로 확인되었다. 이러한 반응속도 모델의 회귀 상수들을 이용하여 우라늄의 농도가 먹는 물 수질기준까지 다다르는 기간을 유추해 본 결과, HCO3의 농도가 높은 중성환경의 지하수 조건에서 약 29.4년으로, 대체적으로 빠르게 용출되는 것으로 예측되었다.

The study area was Gangnim-myeon, Hoengseong-gun, Gangwon-do, composed of the Chiaksan gneiss complex, and it was revealed that the concentrations of uranium (U) and thorium (Th) within the groundwater of the study area exceeded their water quality standards. Hence, artificial weathering experiments were conducted to elucidate mineralogically the mechanisms of their leaching using drilling cores obtained from the corresponding groundwater aquifers. First of all, the mineralogical compositions of core samples were observed, and the results indicated that the content of clinochlore, a member of the chlorite group of minerals that can form through low- and intermediate-temperature metamorphisms, was relatively higher. In addition, the Th concentration was measured ten times higher than that of U. The results of artificial weathering experiments suggested that the Th concentrations gradually increased through the dissolution of radioactive-element-bearing minerals up to the first day, and then they tended to decrease. It could be attributed to the fact that Th was leached with the dissolution of thorite, which might be a secondary mineral, and then dissolved Th was re-precipitated as the various forms of salt, such as sulfate. Even though the U content was lower than that of Th in the core samples, the U concentration was one hundred times higher than that of Th after the weathering experiments. It is likely caused by the gradual dissolution and desorption of U included in intensively weathered thorite or adsorbed as a form of UO22+ on the mineral surface. In addition, the leaching tendency of U and Th was positively correlated with the bicarbonate concentration. However, the concentrations between U and Th in groundwater exhibited a relatively lower correlation, which might result from the fact that they occurred from different sources, as aforementioned. Among various kinetic models, the parabolic diffusion and pseudo-second-order kinetic models were confirmed to best fit the dissolution kinetics of both elements. The period that would be taken for the U concentration to exceed its drinking-water standard was inferred using the regressed parameters of the best-fitted models, and the duration of 29.4 years was predicted in the neutral-pH aquifers with relatively higher concentrations of HCO3, indicating that U could be relatively quickly leached out into groundwater.

키워드

과제정보

이 연구는 환경부의 재원으로 국립환경과학원의 지원(NIER-2023-01-01-096)을 받아 수행되었다.

참고문헌

  1. Abrao, A., de Freitas, A.A. and de Carvalho, F.M.S., 2001, Preparation of highly pure thorium nitrate via thorium sulfate and thorium peroxide. J. Alloys Compd., 12, 53-56. https://doi.org/10.1016/S0925-8388(01)00998-7
  2. Balaram, V. and Subramanyam, K.S.V., 2022, Sample preparation for geochemical analysis: Strategies and significance. Adv. Sample Prep., 1, 100010.
  3. Choo, C.O., 2002, Characteristics of uraniferous minerals in Daebo granite and significance of mineral species. J. Miner. Soc. Korea, 15(1), 11-21.
  4. Faure, G., 1991, Principles and applications of inorganic geochemistry, Macmillan Publishing Company, New York, 626p.
  5. Hwang, J., 2013, Occurrence of U-minerals and source of U in Groundwater in Daebo granite, Daejeon area. J. Eng. Geol., 23, 399-407. https://doi.org/10.9720/kseg.2013.4.399
  6. Hwang, J. and Moon, S., 2018, Geochemical evidence for K-metasomatism related to uranium enrichment in Daejeon granitic rocks near the central Ogcheon Metamorphic Belt, Korea. Geosci. J., 22(6), 1001-1013. https://doi.org/10.1007/s12303-018-0053-9
  7. Hwang, J. and Moon, S., 2021, Geochemistry of U and Th of Mesozoic granites in South Korea: implications of occurrences of different U-host minerals and dissolved U and Rn between Jurassic and Cretaceous granite aquifers. Geosci. J., 25(2), 183-195. https://doi.org/10.1007/s12303-020-0033-8
  8. Hwang, J., Moon, S., Ripley, E.M. and Kim, Y.H., 2014, Determining uraniferous host rocks and minerals as a source of dissolved uranium in granite aquifers near the central Ogcheon metamorphic belt, Korea. Environ. Earth. Sci., 72, 4035-4046. https://doi.org/10.1007/s12665-014-3293-7
  9. Jeong, C.H., Yang, J.H., Lee, Y.J., Lee, Y.C., Choi, H.Y., Kim, M.S., Kim, H.K., Kim, T.S. and Jo, B.U., 2015, Occurrences of Uranium and Radon-222 from Groundwaters in Various Geological Environment in the Hoengseong Area. J. Eng. Geol., 25, 557-576. https://doi.org/10.9720/kseg.2015.4.557
  10. Jeong, D.H., Kim, M.S., Ju, B.K., Hong, J.K., Kim, D.S., Kim, H.K., Kim, H.J., Park, S.H., Han, J.S. and Kim, T.S., 2013, Environmental characteristics of natural radionuclides in groundwaters in volcanic rock areas: Korea. J. Soil Groundwater Environ., 18(1), 36-45. https://doi.org/10.7857/JSGE.2013.18.1.036
  11. Ju, B.K., Kim, M.S., Jeong, D.H., Hong, J.K., Kim, D.S., Noh, H.J., Yoon, J.K. and Kim, T.S., 2013, Environmental characteristics of naturally occurring radioactive materials (238U, 222Rn) concentration in drinking groundwaters of metamorphic rock areas: Korea. J. Soil Groundwater Environ., 18(3), 82-92. https://doi.org/10.7857/JSGE.2013.18.3.082
  12. Jun, B., Kim, H., Rho, H., Seo, J., Jeon, J., Nam, S., Park, C. and Yoon, Y., 2023, Recovery of rare-earth and radioactive elements from contaminated water through precipitation: A review. Chemi. Eng. J., 475(1), 146222.
  13. Kim, H., Lee, S., Kim, S., Jeong, D., Kim, M., Kim, H. and Jeong, J.O., 2022, The Origin of Radioactive Elements Found in groundwater Within the Chiaksan Gneiss Complex: Focusing on the Relationship with Minerals of the Surrounding Geology. Korean J. Mineral. Petrol., 35(2), 153-168.
  14. Kim, M.S., Yang, J.H., Jeong, C.H., Kim, H.K., Kim, D.W. and Jo, B.U., 2014, Geochemical Origins and Occurrences of Natural Radioactive Materials in Borehole Groundwater in the Goesan Area. J. Eng. Geol., 24(4), 535-550. https://doi.org/10.9720/kseg.2014.4.535
  15. Krupka K.M. and Serne, R.J., 2002, Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Pacific Northwest National Laboratory, Richland, Washington, 99352.
  16. Lee, W., 2015, Characterization of behavior of colloidal zerovalent iron and iron (oxyhydr)oxides in aqueous environment and adsorption surface of arsenic. Ph. D. dissertation, Gyeongsang National University, 180p.
  17. Lee, W., Lee, S., Jeon, J., Lee, J., Jeong, D., Kim, M., Kim, H. and Kim, S., 2022, Uranium Concentrations in Private Wells of Potable Groundwater, Korea. Toxics, 10, 543.
  18. Moon, S.H., Hwang, J., Lee, J.Y., Hyun, S.P., Bae, B.K., and Park, Y. 2013, Establishing the origin of elevated uranium concentrations in groundwater near the central Ogcheon Metamorphic Belt, Korea. J. Environ. Qaul., 42, 118-128. https://doi.org/10.2134/jeq2012.0044
  19. Moro, D., Ulian, G. and Valdre, G, 2019, 3D meso-nanostructures in cleaved and nanolithographed Mg-Al-hydroxysilicate (clinochlore): Topology, crystal-chemistry, and surface properties. Appl. Clay Sci., 169(1), 74-80. https://doi.org/10.1016/j.clay.2018.12.020
  20. Muhr-Eber, E.L., Wagner, F. and Walther, C., 2019. Speciation of uranium: Compilation of a thermodynamic database and its experimental evaluation using different analytical techniques. Appl. Geochem., 100, 213-222. https://doi.org/10.1016/j.apgeochem.2018.10.006
  21. NIER (National Institute of Environmental Research), 2021, Survey on Naturally Occurring Radioactive Materials (N.O.R.M.) in private groundwater wells (2021), Report, 309.
  22. NIER (National Institute of Environmental Research), 2022, ISurvey on Naturally Occurring Radioactive Materials (N.O.R.M.) in private groundwater wells (2022), Report, 235.
  23. Toman, J.J., Schmitz, G. and Erdelyi, Z., 2017, Linear-parabolic transition in reactive diffusion - A concept of kinetic modelling. Comput. Mater. Sci., 138, 183-191.  https://doi.org/10.1016/j.commatsci.2017.06.009