DOI QR코드

DOI QR Code

Switchable Spatial Control of Linearly Polarized Light Based on a Liquid-crystal Optical Waveguide

  • Zhengtao, Zha (School of Physics and Astronomy, China West Normal University) ;
  • Qianshu, Zhang (School of Electronic Information Engineering, China West Normal University)
  • Received : 2022.10.17
  • Accepted : 2022.11.26
  • Published : 2023.02.25

Abstract

This study reports a structure, based on a liquid-crystal (LC) core optical waveguide, for the switchable spatial control of linearly polarized light. The refractive indices of both left and right isotropic claddings in the waveguide are between the two principal-axis indices of the nematic liquid crystal (NLC). Numerical simulations demonstrate that the proposed structure can be operated in transmission mode or as an attenuator by controlling the on and off states of the applied voltage, whether the initial excitation is transverse electric (TE) linearly polarized light or transverse magnetic (TM) linearly polarized light. The design can also be used as an integrated optical polarizer, since only one type of linearly polarized light is always permitted to pass through the core zone of the NLC optical waveguide.

Keywords

Acknowledgement

Applied Basic Research Project of Science and Technology Department of Sichuan Province (2014JY0024); Scientific Research Fund of Science and Technology Bureau of Nanchong City (19YFZJ0090); Scientific Research Foundation of China West Normal University (17YC056).

References

  1. U. S. Tripathi, A. Bijalwan, and V. Rastogi, "Rib waveguide based liquid crystal EO switch," IEEE Photonics Technol. Lett. 32, 1453-1456 (2020). https://doi.org/10.1109/LPT.2020.3032876
  2. M. R. Shenoy, M. Sharma, and A. Sinha, "An electrically controlled nematic liquid crystal core waveguide with a low switching threshold," J. Light. Technol. 33, 1948-1953 (2015). https://doi.org/10.1109/JLT.2015.2404337
  3. U. S. Tripathi and V. Rastogi, "Liquid crystal based rib waveguide," J. Light. Technol. 38, 4045-4051 (2020). https://doi.org/10.1109/jlt.2020.2985924
  4. S. R. Davis, S. D. Rommel, G. Farca, and M. H. Anderson, "A new electro-optic waveguide architecture and the unprecedented devices it enables," Proc. SPIE 6975, 697505 (2008).
  5. J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, "Liquidcrystal photonic applications," Opt. Eng. 50, 081202 (2011).
  6. V. S. Kabanava, I. I. Rushnova, E. A. Melnikova, and A. L. Tolstik, "Nematic liquid crystal waveguides for spatial control of linearly polarized light waves," in Proc. PhotonIcs & Electromagnetics Research Symposium-Spring (Rome, Italy, Jun. 17-20, 2019), pp. 3832-3835.
  7. R. Asquini, D. Donisi, M. Trotta, A. d'Alessandro, B. Bellini, G. Gilardi, and R. Beccherelli, "Realization of a liquid crystal electrically controlled optical waveguide on micromachined silicon," Mol. Cryst. Liq. Cryst. 500, 23-30 (2009). https://doi.org/10.1080/15421400802713660
  8. D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d'Alessandro, and R. Beccherelli, "Guided-wave liquid-crystal photonics," Lab Chip 12, 3598-3610 (2012). https://doi.org/10.1039/c2lc40514h
  9. T. J. Wang, C. K. Chaung, W. J. Li, T. J. Chen, and B. Y. Chen, "Electrically tunable liquid-crystal-core optical channel waveguide," J. Light. Technol. 31, 3570-3574 (2013). https://doi.org/10.1109/JLT.2013.2285250
  10. T. J. Wang, C. K. Chaung, T. J. Chen, and B. Y. Chen, "Liquid crystal optical channel waveguides with strong polarization-dependent mode tunability," J. Light. Technol. 32, 4289-4295 (2014). https://doi.org/10.1109/JLT.2014.2369511
  11. O. S. Kabanova, E. A. Melnikova, I. I. Olenskaya, and A. L. Tolstik, "Electrically controlled waveguide liquid-crystal elements," Tech. Phys. Lett. 40, 598-600 (2014). https://doi.org/10.1134/S1063785014070207
  12. E. A. Melnikova, A. L. Tolstik, I. I. Rushnova, O. S. Kabanova, and A. A. Muravsky, "Electrically controlled spatial-polarization switch based on patterned photoalignment of nematic liquid crystals," Appl. Opt. 55, 6491-6495 (2016). https://doi.org/10.1364/AO.55.006491
  13. K. A. Rutkowska, M. Chychlowski, M. Kwasny, I. Ostromecka, J. Pilka, and U. A. Laudyn, "Light propagation in periodic photonic structures formed by photo-orientation and photo-polymerization of nematic liquid crystals," Opto-Electron. Rev. 25, 118-126 (2017). https://doi.org/10.1016/j.opelre.2017.05.004
  14. I. I. Rushnova, O. S. Kabanova, E. A. Melnikova, and A. L. Tolstik, "Integrated-optical nematic liquid crystal switches: designing and operation features," Nonlinear Phenom. Complex Syst. 21, 206-219 (2018).
  15. I. I. Rushnova, E. A. Melnikova, A. L. Tolstik, and A. A. Muravsky, "Electrically switchable photonic liquid crystal devices for routing of a polarized light wave," Opt. Commun. 413, 179-183 (2018). https://doi.org/10.1016/j.optcom.2017.12.029
  16. C.-L. Chen, Foundations for Guided-wave Optics, 1st ed. (John Wiley & Sons Inc., NJ, USA, 2007).
  17. A. d'Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, "Polarization-independent nematic liquid crystal waveguides for optofluidic applications," IEEE Photonics Technol. Lett. 27, 1709-1712 (2015). https://doi.org/10.1109/LPT.2015.2438151
  18. M. F. O. Hameed, F. F. K. Hussain, and S. S. Obayya, "Ultra-compact polarization rotator based on liquid crystal channel on silicon," J. Light. Technol. 35, 2190-2199 (2017). https://doi.org/10.1109/JLT.2017.2686780
  19. T. Li, Q. Chen, and X. Zhang, "Electrically controlled polarization rotator using nematic liquid crystal," Opt. Express 26, 32317-32323 (2018). https://doi.org/10.1364/oe.26.032317
  20. J. Li, S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
  21. M. Sharma, M. R. Shenoy, and A. Sinha, "Electro-optic switching in liquid crystal core waveguide at 1550 nm wavelength," in Proc. Opto-Electronics and Communications Conference and Photonics Global Conference (Singapore, Jul. 31-Aug. 04, 2017), pp. 1-2.
  22. G. Beadie, M. Brindza, R. A. Flynn, A. Rosenberg, and J. S. Shirk, "Refractive index measurements of poly(methyl methacrylate) (PMMA) from 0.4-1.6 ㎛," Appl. Opt. 54, F139-F143 (2015). https://doi.org/10.1364/AO.54.00F139
  23. Z. T. Zha and Q. S. Zhang, "Relationship of field components in the liquid crystal optical waveguide eigenmode," Chin. J. Liq. Cryst. Disp. 37, 14-20 (2022). https://doi.org/10.37188/CJLCD.2021-0276
  24. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices, 1st ed. (John Wiley & Sons Inc., NJ, USA, 2006).
  25. O. P. Agrawal, "Formulation of Euler-Lagrange equations for fractional variational problems," J. Math. Anal. Appl. 272, 368-379 (2002). https://doi.org/10.1016/S0022-247X(02)00180-4
  26. P. D. Brimicombe, C. Kischka, S. J. Elston, and E. P. Raynes, "Measurement of the twist elastic constant of nematic liquid crystals using pi-cell devices," J. Appl. Phys. 101, 043108 (2007).
  27. E. Perivolari, G. D'Alessandro, V. Apostolopoulos, N. Brouckaert, T. Heiser, and M. Kaczmarek, "Two-dimensional snapshot measurement of surface variation of anchoring in liquid crystal cells," Liq. Cryst. 48, 2086-2096 (2021). https://doi.org/10.1080/02678292.2021.1928309
  28. Z.-T. Zha and Q.-S. Zhang, "Electrically controlled polarization rotator based on liquid crystal optical waveguide," Chin. Opt. 15, 552-561 (2022). https://doi.org/10.37188/CO.2021-0213
  29. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, "Vector finite difference modesolver for anisotropic dielectric waveguides," J. Light. Technol. 26, 1423-1431 (2008). https://doi.org/10.1109/JLT.2008.923643
  30. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrodinger Equations (John Wiley & Sons, Inc., NY, USA, 2001).
  31. L. D. S. Alcantara, F. L. Teixeira, A. C. Cesar, and B.-H. V. Borges, "A new full-vectorial FD-BPM scheme: Application to the analysis of magnetooptic and nonlinear saturable media," J. Light. Technol. 23, 2579-2585 (2005). https://doi.org/10.1109/JLT.2005.850811
  32. G. R. Hadley, "Transparent boundary condition for beam propagation," Opt. Lett. 16, 624-626 (1991). https://doi.org/10.1364/OL.16.000624
  33. Y. Xu, M. A. Uddin, P. S. Chung, and H. P. Chan, "Fabrication of a polymer based variable optical attenuator using liquid crystal cladding on inverted channel waveguide structure," in Proc. OECC/ACOFT 2008-Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (Sydney, Australia, Jul. 7-10, 2008), pp. 1-2.
  34. M. M. Qureshi, K. D. Mac, A. H. Kim, Y. R. Kim, and E. Chung, "Enhancement of speckle contrast in vivo by combining linearly polarized laser light and an analyzer," Curr. Opt. Photonics 5, 351-361 (2021).