DOI QR코드

DOI QR Code

Babinet-principle-inspired Metasurfaces for Resonant Enhancement of Local Magnetic Fields

  • Seojoo, Lee (School of Applied and Engineering Physics, Cornell University) ;
  • Ji-Hun, Kang (Department of Optical Engineering, Kongju National University)
  • 투고 : 2022.11.29
  • 심사 : 2023.01.01
  • 발행 : 2023.02.25

초록

In this paper, we propose Babinet-principle-inspired metasurfaces for strong resonant enhancement of local magnetic fields. The metasurfaces are designed as complementary structures of original metasurfaces supporting the local enhancement of electric fields. We show numerically that the complementary structures can support spoof magnetic surface plasmons that induce strong local magnetic fields without sacrificing the deep sub-wavelength-thick nature of the metasurface. By introducing a periodic array of metallic rods in the proximity of the metasurfaces, we demonstrate that a resonant enhancement of the local magnetic fields, more than 80 times the amplitude of an incident magnetic field, can emerge from a resonance of the spoof magnetic surface plasmons.

키워드

과제정보

Research grant from Kongju National University in 2020; National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant No. NRF-2021R1A2C2012617, NRF-2020R1C1C1012138).

참고문헌

  1. K. Yao and Y. Liu, "Plasmonic metamaterials," Nanotechnol. Rev. 3, 177-210 (2014).
  2. S. Yoo, S. Lee, J.-H. Choe, and Q.-H. Park, "Causal homogenization of metamaterials," Nanophotonics 8, 1063-1069 (2019). https://doi.org/10.1515/nanoph-2019-0069
  3. J.-H. Kang and Q.-H. Park, "Local enhancement of terahertz waves in structured metals," IEEE Trans. Terahertz Sci. Technol. 6, 371-381 (2016). https://doi.org/10.1109/TTHZ.2016.2549361
  4. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3, 152-156 (2009). https://doi.org/10.1038/nphoton.2009.22
  5. H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008). https://doi.org/10.1038/nature06762
  6. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114 (2001).
  7. J. H. Kang, D. S. Kim, and Q.-H. Park, "Local capacitor model for plasmonic electric field enhancement," Phys. Rev. Lett. 102, 093906 (2009).
  8. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature 470, 369-373 (2011). https://doi.org/10.1038/nature09776
  9. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004). https://doi.org/10.1126/science.1098999
  10. J. T. Shen, P. B. Catrysse, and S. Fan, "Mechanism for designing metallic metamaterials with a high index of refraction," Phys. Rev. Lett. 94, 197401 (2005).
  11. J.-H. Kang and Q.-H. Park, "Fractional tunnelling resonance in plasmonic media," Sci. Rep. 3, 2423 (2013).
  12. A. I. Fernandez-Domanguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, "Spoof surface plasmon polariton modes propagating along periodically corrugated wires," IEEE J. Sel. Top. Quantum Electron. 14, 1515-1521 (2008). https://doi.org/10.1109/JSTQE.2008.918107
  13. C. Ropers, G. Stibenz, G. Steinmeyer, R. Muller, D. J. Park, K. G. Lee, J. E. Kihm, J. Kim, Q. H. Park, D. S. Kim, and C. Lienau, "Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials," Appl. Phys. B 84, 183-189 (2006). https://doi.org/10.1007/s00340-006-2191-4
  14. J.-H. Kang, S.-J. Lee, B. J. Kang, W. T. Kim, F. Rotermund, and Q.-H. Park, "Anomalous wavelength scaling of tightly-coupled terahertz metasurfaces," ACS Appl. Mater. Interfaces 10, 19331-19335 (2018). https://doi.org/10.1021/acsami.8b05806
  15. S. Lee, W. T. Kim, J.-H. Kang, B. J. Kang, F. Rotermund, and Q.-H. Park, "Single-layer metasurfaces as spectrally tunable terahertz half-and quarter-waveplates," ACS Appl. Mater. Interfaces 11, 7655-7660 (2019). https://doi.org/10.1021/acsami.8b21456
  16. P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, "Magnetic localized surface plasmons," Phys. Rev. X 4, 021003 (2014).
  17. F. J. Garcia-Vidal, A. I. Fernandez-Dominguez, L. Martin-Moreno, H. C. Zhang, W. Tang, R. Peng, and T. J. Cui, "Spoof surface plasmon photonics," Rev. Mod. Phys. 94, 025004 (2022).
  18. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004). https://doi.org/10.1126/science.1105371
  19. L.-L. Liu, Z. Li, C.-Q. Gu, P.-P. Ning, B.-Z. Xu, Z.-Y. Niu, and Y.-J. Zhao, "A corrugated perfect magnetic conductor surface supporting spoof surface magnon polaritons," Opt. Express 22, 10675-10681 (2014). https://doi.org/10.1364/OE.22.010675
  20. C. Sirtori, "Bridge for the terahertz gap," Nature 417, 132-133 (2002). https://doi.org/10.1038/417132b
  21. J. R. Jimenez and E. Hita, "Babinet's principle in scalar theory of diffraction," Opt. Rev. 8, 495-497 (2001). https://doi.org/10.1007/BF02931741
  22. S. Koo, M. S. Kumar, J. Shin, D. Kim, and N. Park, "Extraordinary magnetic field enhancement with metallic nanowire: Role of surface impedance in Babinet's principle for sub-skin-depth regime," Phys. Rev. Lett. 103, 263901 (2009).
  23. S. Lee and J.-H. Kang, "Gap-size-dependent effective phase transition in metasurfaces of closed-ring resonators," Crystals 11, 684 (2021).
  24. J.-H. Choe, J.-H. Kang, D.-S. Kim, and Q.-H. Park, "Slot antenna as a bound charge oscillator," Opt. Express 20, 6521-6526 (2012). https://doi.org/10.1364/OE.20.006521
  25. P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Hadar, and J. L. Pelouard, "Total funneling of light in high aspect ratio plasmonic nanoresonators," Appl. Phys. Lett. 98, 191109 (2011).