Acknowledgement
이 연구는 2022년도 교육부의 재원으로 한국연구재단의 기초연구사업(NRF-2022R1I1A1A01052953)과 환경부의 재원으로 국립낙동강생물자원관에서 지원(NNIBR202303113)을 받아 수행된 연구입니다.
References
- Priyadarshani, I., and Rath, B. 2012. Commercial and industrial applications of micro algae-A review. J. algal biomass util. 3, 89-100.
- Kim, B., Lee, S.Y., Narasimhan, A.L., Kim, S., and Oh, Y.-K. 2022. Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances. Biores our. Technol. 343, 126124.
- Oh, Y.-K., Kim, S., Ilhamsyah, D.P.A., Lee, S.-G., and Kim, J.R. 2022. Cell disruption and lipid extraction from Chlorella species for biorefinery applications: Recent ad vances. Bioresour. Technol. 366, 128183.
- Sasso, S., Pohnert, G., Lohr, M., Mittag, M., and Hertweck, C. 2012. Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol. Rev. 36, 761-785. https://doi.org/10.1111/j.1574-6976.2011.00304.x
- Varela, J.C., Pereira, H., Vila, M., and Leon, R. 2015. Production of carotenoids by microalgae: achievements and challenges. Photosynth. Res. 125, 423-436. https://doi.org/10.1007/s11120-015-0149-2
- Muller, P., Li, X.-P., and Niyogi, K.K. 2001. Non-photo chemical quenching. A response to excess light energy. Plant Physiol. 125, 1558-1566. https://doi.org/10.1104/pp.125.4.1558
- Sandmann, G. 2019. Antioxidant protection from UV-and light-stress related to carotenoid structures. Antioxidant s 8, 219.
- Chiu, H.F., Liao, J.Y., Lu, Y.Y., Han, Y.C., Shen, Y.C., Venkatakrishnan, K., Golovinskaia, O., and Wang, C.K. 2017. Anti-proliferative, anti-inflammatory and pro-apoptotic effects of Dunaliella salina on human KB oral carcinoma cells. J. Food Biochem. 41, e12349.
- Fimbres-Olivarria, D., Carvajal-Millan, E., Lopez-Elias, J.A., Martinez-Robinson, K.G., Miranda-Baeza, A., Mart inez-Cordova, L.R., Enriquez-Ocana, F., and Valdez-Holguin, J.E. 2018. Chemical characterization and antioxidant activity of sulfated polysaccharides from Navicula sp. Food Hydrocoll. 75, 229-236. https://doi.org/10.1016/j.foodhyd.2017.08.002
- Cezare-Gomes, E.A., Mejia-da-Silva, L.d.C., Perez-Mora, L.S., Matsudo, M.C., Ferreira-Camargo, L.S., Singh, A.K., and de Carvalho, J.C.M. 2019. Potential of microalgae carotenoids for industrial application. Appl. Microbiol. Biotechnol. 188, 602-634.
- Wang, S.K., Stiles, A.R., Guo, C., and Liu, C.Z. 2014. Microalgae cultivation in photobioreactors: An overview of light characteristics. Eng. Life Sci. 14, 550-559. https://doi.org/10.1002/elsc.201300170
- Bechet, Q., Shilton, A., and Guieysse, B. 2013. Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol. Adv. 31, 1648-1663. https://doi.org/10.1016/j.biotechadv.2013.08.014
- Ralph, P.J., and Gademann, R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222-237. https://doi.org/10.1016/j.aquabot.2005.02.006
- Imaizumi, Y., Nagao, N., Yusoff, F.M., Taguchi, S., and Toda, T. 2014. Estimation of optimum specific light intensity per cell on a high-cell-density continuous culture of Chlorella zofingiensis not limited by nutrients or CO2. Bioresour. Technol. 162, 53-59. https://doi.org/10.1016/j.biortech.2014.03.123
- Yoon, J.H., Shin, J.-H., and Park, T.H. 2008. Characterization of factors influencing the growth of Anabaena variabilis in a bubble column reactor. Bioresour. Technol. 99, 1204-1210. https://doi.org/10.1016/j.biortech.2007.02.012
- Koller, A.P., Lowe, H., Schmid, V., Mundt, S., and Weuster-Botz, D. 2017. Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor. Biotechnol. Bioeng. 114, 308-320. https://doi.org/10.1002/bit.26072
- Lee, C.-G. 1999. Calculation of light penetration depth in photobioreactors. Biotechnol. Bioprocess Eng. 4, 78-81. https://doi.org/10.1007/BF02931920
- Song, I., Kim, J., Baek, K., Choi, Y., Shin, B., and Jin, E. 2020. The generation of metabolic changes for the production of high-purity zeaxanthin mediated by CRISPR-Cas9 in Chlamydomonas reinhardtii. Microb. Cell. Fact. 19, 1-9. https://doi.org/10.1186/s12934-019-1269-8
- Hanwool, P., Jiho, M., Seonghoon, Y., Seong-Joo, H., EonSeon, J., and Choul-Gyun, L. 2020. Enhancement of biomass productivity of the zeaxanthin producing Microalga Chlamydomonas reinhardtii dZL in 100 L flat-panel photobioreactors by changing initial cell density. KSBB J. 35, 78-83. https://doi.org/10.7841/ksbbj.2020.35.1.78
- Kim, Z.-H., Park, H., Ryu, Y.-J., Shin, D.-W., Hong, S.-J., Tran, H.-L., Lim, S.-M., and Lee, C.-G. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27, 1763-1773. https://doi.org/10.1007/s10811-015-0556-y
- Yoon, J.H., Choi, S.S., and Park, T.H. 2012. The cultivation of Anabaena variabilis in a bubble column operating under bubbly and slug flows. Bioresour. Technol. 110, 430-436. https://doi.org/10.1016/j.biortech.2012.01.061
- Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: (eds), Methods in enzymology, vol 148, Elsevier, pp 350-382.
- Rajendran, A., Anderson, G.A., Yan, X., and Gent, S. 2013. Light in a Photobioreactor. American Society of Agricultural and Biological Engineers. SD14-007.
- Solovchenko, A., and Chekanov, K. 2014. Production of carotenoids using microalgae cultivated in photobioreactors. In: H.N.M. Kee-Yoeup Paek, Jian-Jiang Zhong(eds), Production of biomass and bioactive compounds using bioreactor technology, Springer Dordrecht, pp 63-91.
- Zuccaro, G., Yousuf, A., Pollio, A., and Steyer, J.-P. 2020. Microalgae cultivation systems. In: A. Yousuf (eds), Microalgae cultivation for biofuels production, Acade mic Press, pp 11-29.
- Heining, M., and Buchholz, R. 2015. Photobioreactors with internal illumination-a survey and comparison. Biotechnol. J. 10, 1131-1137. https://doi.org/10.1002/biot.201400572
- Carvalho, A.P., Silva, S.O., Baptista, J.M., and Malcata, F.X. 2011. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 89, 1275-1288. https://doi.org/10.1007/s00253-010-3047-8
- Choi, S.-L., Suh, I.S., and Lee, C.-G. 2003. Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microb. Technol. 33, 403-409. https://doi.org/10.1016/S0141-0229(03)00137-6
- Lee, H.-S., Seo, M.-W., Kim, Z.H., and Lee, C.-G. 2006. Determining the best specific light uptake rates for the lumostatic cultures in bubble column photobioreactors. Enzyme Microb. Technol. 39, 447-452. https://doi.org/10.1016/j.enzmictec.2005.11.038
- Fae Neto, W.A., Dosselli, R., Kennington, W.J., and Tomkins, J.L. 2023. Correlated responses to selection for different cell size in Chlamydomonas reinhardtii using divergent evolutionary pathways. J. Appl. Phycol. 35, 1621-1634. https://doi.org/10.1007/s10811-023-02978-1
- Park, Y.H., Park, J., Choi, J.S., Kim, H.S., Choi, J.S., and Choi, Y.-E. 2023. Ultrasonic Treatment Enhanced Astaxanthin Production of Haematococcus pluvialis. J. Microbiol. 61, 633-639. https://doi.org/10.1007/s12275-023-00053-5
- Bohne, F., and Linden, H. 2002. Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. Biochim. Biophys. Acta-Gene Struct. Expression. 1579, 26-34. https://doi.org/10.1016/S0167-4781(02)00500-6