DOI QR코드

DOI QR Code

Extraction and Utilization of DEM based on UAV Photogrammetry for Flood Trace Investigation and Flood Prediction

침수흔적조사를 위한 UAV 사진측량 기반 DEM의 추출 및 활용

  • Jung-Sik PARK (Dept.of Civil Engineering, Kumoh National Institute of Technology) ;
  • Yong-Jin CHOI (Dept.of Civil Engineering, Kumoh National Institute of Technology, Taegu Science University) ;
  • Jin-Duk LEE (Dept.of Civil Engineering, Kumoh National Institute of Technology)
  • Received : 2023.11.26
  • Accepted : 2023.12.26
  • Published : 2023.12.31

Abstract

Orthophotos and DEMs were generated by UAV-based aerial photogrammetry and an attempt was made to apply them to detailed investigations for the production of flood traces. The cultivated area located in Goa-eup, Gumi, where the embankment collapsed and inundated inundation occurred due to the impact of 6th Typhoon Sanba in 2012, was selected as rhe target area. To obtain optimal accuracy of UAV photogrammetry performance, the UAV images were taken under the optimal placement of 19 GCPs and then point cloud, DEM, and orthoimages were generated through image processing using Pix4Dmapper software. After applying CloudCompare's CSF Filtering to separate the point cloud into ground elements and non-ground elements, a finally corrected DEM was created using only non-ground elements in GRASS GIS software. The flood level and flood depth data extracted from the final generated DEM were compared and presented with the flood level and flood depth data from existing data as of 2012 provided through the public data portal site of the Korea Land and Geospatial Informatix Corporation(LX).

본 연구에서는 UAV기반 항공사진측량에 의해 정사사진 및 DEM을 생성하고 이를 침수흔적도 제작을 위한 정밀조사에 적용하고자 하였다. 2012년 9월 제6호 태풍 산바(Sanba)의 영향으로 제방붕괴 및 내수침수 피해가 발생한 구미시 고아읍 농경지를 연구대상지역으로 선정하였다. UAV사진측량 성과의 최적 정확도를 얻기 위해 연구지역에 19점의 GCP 최적 배치상태에서 Pix4Dmapper 소프트웨어를 이용한 영상처리를 통하여 점군 데이터, DEM 및 정사영상을 생성하였다. loudCompare의 CSF Filtering를 적용하여 지면요소와 비지면요소로 point cloud를 분리한 후 GRASS GIS 소프트웨어에서 비지면요소만을 사용하여 최종적으로 보정된 DEM을 생성하였다. 최종 생성된 DEM으로부터 추출한 침수위 및 침수심 데이터와 한국국토정보공사(LX)의 공공데이터 포털사이트를 통하여 제공된 2012년 당시 같은 지역에 대한 기존 자료의 침수위 및 침수심 데이터를 비교하여 제시하였다.

Keywords

Acknowledgement

본 연구는 2021년 금오공과대학교 교내학술연구비 지원에 의해 수행되었음.

References

  1. Han, S.H. 2019. Project Design Plan for Drone Photogrammetry. Division of Surveying and Geo-Spatial Information Engineering. Journal of the Korean Society of Civil Engineers. 39(1):239-246. https://doi.org/10.12652/KSCE.2019.39.1.0239
  2. Korea Land and Geospatial Informatix Corporation(LX). 2021. Flood Trace Information Flood Level Line. https://www.data.go.kr/data/15048627/fileData.do (Accessed Oct. 21, 2021).
  3. Korea Land and Geospatial Informatix Corporation(LX). 2021. Flood Trace Information Flood Level Line. https://www.data.go.kr/data/15048628/fileData.do (Accessed Oct. 21, 2021).
  4. Lim, H.T., S.W. Ahn, J.S. Kim, S.Y. Park and Y.S. Kim. 2016. A Study on the Application of Unmanned Aerial Vehicle for Improvement Method of the Making Inundation Trace Map. Journal of Korean Society of Hazard Mitigation, 16(2):223-231. https://doi.org/10.9798/KOSHAM.2016.16.2.223
  5. Park, J.H. and W.H. Lee. 2016. Orthophoto and DEM Generation in Small Slope Areas Using Low Specification UAV. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography. 34(3):283-290. https://doi.org/10.7848/ksgpc.2016.34.3.283
  6. Petras, V., A. Petrasova, J. Jeziorska, and H. Mitasova. 2016. Processing UAV and LIDAR Point Clouds in GRASS GIS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 41:945-952. https://doi.org/10.5194/isprs-archives-XLI-B7-945-2016
  7. Um, D.Y. and J.H. Kim. 2009. Analysis of the Vulnerable Area about Inundation on the Upriver Basin of Dam by Flood Simulation Using GIS, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography. 27(6):723-731.
  8. Weil, J. 1986. The synthesis of cloth objects. Computer Graphics. 20(4);49-54. https://doi.org/10.1145/15886.15891
  9. Zhang, W., J. Qi, P. Wan, H. Wang, D. Xie, X. Wang, and G. Yan. 2016. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sensing. 8(6):501.