DOI QR코드

DOI QR Code

A preliminary study on the determination of drought stages at the local level

지역 단위 가뭄단계 판단규칙 개발에 관한 연구

  • Lee, Jongso (Construction Economy & Industry Research Division, Korea Research Institute for Human Settlements) ;
  • Jeon, Daeun (Chemicals Research Division, National Institute of Environmental Research) ;
  • Yoon, Hyeoncheol (National Intergrated Drought Center, national Disaster Management Research Institute) ;
  • Kam, Jonghun (Division of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Lee, Sangeun (Land & Infrastructure Safety Research Center, Korea Research Institute for Human Settlements)
  • 이종소 (국토연구원 건설경제산업연구본부) ;
  • 전다은 (국립환경과학원 화학물질연구과) ;
  • 윤현철 (국립재난안전연구원 국가통합가뭄센터) ;
  • 감종훈 (포항공과대학교 환경공학부) ;
  • 이상은 (국토연구원 안전국토연구센터)
  • Received : 2023.10.24
  • Accepted : 2023.11.29
  • Published : 2023.12.31

Abstract

This study aims to develop rules for the Determination of Drought Stages at the Local Level based on the drought cases in Gwangju and Jeollanam-do in 2022-2023. Among the eight drought indicators provided, six indicators (Agricultural drought stage (for paddy), Residential & industrial drought stage, SPI-12, Relative agricultural water storage, Residential water consumption change (for domestic use), Residential water consumption change (for non-domestic use) were confirmed to have statistical correlations with the perceptions of local government officials and experts. Additionally, this drought indicator was applied to a decision tree algorithm to develop rules for determining the severity of drought. Although it presented results similar to those of the existing method presented in previous studies, it showed a significant comparative advantage in explaining the temporal and spatial patterns of drought in the Gwangju and Jeollanam-do.

본 연구는 2022-2023 광주・전남지역 가뭄 사례를 바탕으로 지역 단위에서 가뭄의 심각성을 토대로 가뭄단계를 판단하는 규칙을 개발하기 위해 실시되었다. 전국의 시・군 단위로 발표되는 8가지 가뭄지표 중에서 농업용수(논) 가뭄단계, 생・공용수 가뭄단계, SPI-12, 농업용 저수지 저수율, 예년 대비 가정용수 사용량 변화율, 예년 대비 비가정용수 사용량 변화율 등의 6가지 지표는 담당자・전문가들의 인식과 통계적 상관성을 확인할 수 있었다. 또한 이 가뭄지표를 의사결정트리 알고리즘에 적용하여 가뭄의 심각성을 판단하기 위한 규칙을 도출하였는데, 선행연구에서 제안한 기존의 방법과 유사한 결과를 제시하나, 광주・전남지역 가뭄에서 확인된 시・공간적인 패턴을 설명하는데 있어서 상당한 비교우위를 보였다.

Keywords

Acknowledgement

이 논문은 행정안전부 재난안전공동연구 기술개발사업의 지원을 받아 수행된 연구임(2022-MOIS63-001(RS-2022-ND641011)).

References

  1. Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classification and regression trees. Routledge. New York, NY, U.S.
  2. California Department of Water Resources (California DWR) (2010). California drought contingency plan. Sacramento, CA, U.S.
  3. Connecticut Interagency Drought Workgroup (Connecticut IDW) (2018). Connecticut drought preparedness and response plan. Hartford, CT, U.S.
  4. Jeon, Y., and Cho, H. (2019). "Model based hybrid decision tree." Journal of the Korean Data & Information Science Society, Vol. 30, No. 3, pp. 515-524. https://doi.org/10.7465/jkdi.2019.30.3.515
  5. Kass, GV. (1980). "An exploratory technique for investigating large quantities of categorical data." Journal of the Royal Statistical Society Series C, Vol. 29, No. 2, pp. 119-127. https://doi.org/10.2307/2986296
  6. Korea Meteorological Administration (KMA) (2023). Hydrometeorological drought information system, accessed 10 April 2023, <https://hydro.kma.go.kr/>.
  7. Lee, J., and Lee, S. (2022). "A preliminary study on the cooperative multi-ministry decision on the integrated drought warning alert stage using rule-based hybrid techniques." The Korea Spatial Planning Review, Vol. 114. pp. 3-16. https://doi.org/10.15793/KSPR.2022.114..001
  8. Lee, S., and Cha, D. (2015). "A study on the urgency and obstacles to introducing a drought disaster management system." Magazine of Korea Water Resources Association Water for Future, Vol. 48, No. 9, pp. 24-27.
  9. Lee, S., Jeon, D., Lee, J., Kwon, H., and Kam, J. (2023). "Measures to improve the preparedness and response system in terms of disaster management due to the deepening and spread of drought in the Gwangju and Jeollanam-do." Korea Research Institute for Human Settlements Policy Brief, No. 907, pp. 1-8.
  10. Ministry of Agriculture, Food and Rural Affairs (MAFRA) (2023). Agricultural drought management system, accessed 10 April 2023, <https://adms.ekr.or.kr/>.
  11. Ministry of Public Safety and Security (MPSS) (2016). Ministry of public safety and security, First warning alert announced, accessed 15 April 2023, <https://www.mois.go.kr/mpss/safe/open/press/%3Bjsessionid=PIzlu-kyeDibsgxnVEi2RLFi.node11?boardId=bbs_0000000000000047&mode=view&cntId=834&category=&pageIdx=64&searchCondition=&searchKeyword=>
  12. Ministry of the Interior and Safety (MOIS) (2023). Korea, accessed 10 April 2023, <https://www.mois.go.kr/>.
  13. Multi-ministries Cooperative (2020). Comprehensive drought measure. 
  14. Multi-ministries Cooperative (2023). Drought diagnosis and future measures: Drought response project card.
  15. National Disaster Management Research Institute (NDMI) (2021). Research on development and strategic plan of the national integrated drought management technology.
  16. New Mexico Office of the State Engineer (New Mexico OSE) and Water Resources Research Institute (WRRI) (2018). New Mexico drought plan: 2018. NM, U.S.
  17. Quinlan, J.R. (1993). "C4.5: Programs for machine learning." Morgan Kaufmann Publishers. Burlington, MA, U.S.
  18. Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D., Miskus, D., and Stephens, S. (2002). "The drought monitor." Bulletin of the American Meteorological Society, Vol. 83, No. 8, pp. 1181-1190. https://doi.org/10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2
  19. Yoon, H., Lee, C., Choi, C., Hwang, J., Kim, M., Jo, H., Kim, W., and Jun, W. (2020). The development of integrated drought information assessment technique for regional customization. National Disaster Management Research Institute.