DOI QR코드

DOI QR Code

Purple perilla frutescens extracts containing α-asarone inhibit inflammatory atheroma formation and promote hepatic HDL cholesterol uptake in dyslipidemic apoE-deficient mice

  • Sin-Hye Park (Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University) ;
  • Young Eun Sim (Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University) ;
  • Min-Kyung Kang (Department of Food and Nutrition, Andong National University) ;
  • Dong Yeon Kim (Department of Food and Nutrition, Andong National University) ;
  • Il-Jun Kang (Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University) ;
  • Soon Sung Lim (Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University) ;
  • Young-Hee Kang (Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University)
  • Received : 2023.06.30
  • Accepted : 2023.08.21
  • Published : 2023.12.01

Abstract

BACKGROUND/OBJECTIVES: Dyslipidemia causes metabolic disorders such as atherosclerosis and fatty liver syndrome due to abnormally high blood lipids. Purple perilla frutescens extract (PPE) possesses various bioactive compounds such as α-asarone, chlorogenic acid and rosmarinic acid. This study examined whether PPE and α-asarone improved dyslipidemia-associated inflammation and inhibited atheroma formation in apolipoprotein E (apoE)-deficient mice, an experimental animal model of atherosclerosis. MATERIALS/METHODS: ApoE-deficient mice were fed on high cholesterol-diet (Paigen's diet) and orally administrated with 10-20 mg/kg PPE and α-asarone for 10 wk. RESULTS: The Paigen's diet reduced body weight gain in apoE-deficient mice, which was not restored by PPE or α-asarone. PPE or α-asarone improved the plasma lipid profiles in Paigen's diet-fed apoE-deficient mice, and despite a small increase in high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL)-cholesterol, and very LDL were significantly reduced. Paigen's diet-induced systemic inflammation was reduced in PPE or α-asarone-treated apoE-deficient mice. Supplying PPE or α-asarone to mice lacking apoE suppressed aorta atherogenesis induced by atherogenic diet. PPE or α-asarone diminished aorta accumulation of CD68- and/or F4/80-positive macrophages induced by atherogenic diet in apoE-deficient mice. Treatment of apoE-deficient mice with PPE and α-asarone resulted in a significant decrease in plasma cholesteryl ester transfer protein level and an increase in lecithin:cholesterol acyltransferase reduced by supply of Paigen's diet. Supplementation of PPE and α-asarone enhanced the transcription of hepatic apoA1 and SR-B1 reduced by Paigen's diet in apoE-deficient mice. CONCLUSIONS: α-Asarone in PPE inhibited inflammation-associated atheroma formation and promoted hepatic HDL-C trafficking in dyslipidemic mice.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A1A03044501) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2022R1A2B5B01001861).

References

  1. Musunuru K. Atherogenic dyslipidemia: cardiovascular risk and dietary intervention. Lipids 2010;45:907-14. https://doi.org/10.1007/s11745-010-3408-1
  2. Hedayatnia M, Asadi Z, Zare-Feyzabadi R, Yaghooti-Khorasani M, Ghazizadeh H, Ghaffarian-Zirak R, Nosrati-Tirkani A, Mohammadi-Bajgiran M, Rohban M, Sadabadi F, et al. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis 2020;19:42.
  3. Chiu S, Williams PT, Krauss RM. Effects of a very high saturated fat diet on LDL particles in adults with atherogenic dyslipidemia: a randomized controlled trial. PLoS One 2017;12:e0170664.
  4. Pedro-Botet J, Ascaso JF, Blasco M, Brea A, Diaz A, Hernandez-Mijares A, Pinto X, Millan J; Grupo de trabajo sobre Dislipidemia Aterogenica, Sociedad Espanola de Arteriosclerosis. Triglycerides, HDL cholesterol and atherogenic dyslipidaemia in the 2019 European guidelines for the management of dyslipidaemias. Clin Investig Arterioscler 2020;32:209-18. https://doi.org/10.1016/j.artere.2019.12.001
  5. Kones R, Rumana U. Current treatment of dyslipidemia: evolving roles of non-statin and newer drugs. Drugs 2015;75:1201-28. https://doi.org/10.1007/s40265-015-0429-3
  6. Sahebkar A, Watts GF. New LDL-cholesterol lowering therapies: pharmacology, clinical trials, and relevance to acute coronary syndromes. Clin Ther 2013;35:1082-98. https://doi.org/10.1016/j.clinthera.2013.06.019
  7. Mahley RW, Rall SC Jr. Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 2000;1:507-37. https://doi.org/10.1146/annurev.genom.1.1.507
  8. Phillips MC. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 2014;66:616-23. https://doi.org/10.1002/iub.1314
  9. Getz GS, Reardon CA. Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res 2009;50 Suppl:S156-61. https://doi.org/10.1194/jlr.R800058-JLR200
  10. Moghadasian MH, McManus BM, Nguyen LB, Shefer S, Nadji M, Godin DV, Green TJ, Hill J, Yang Y, Scudamore CH, et al. Pathophysiology of apolipoprotein E deficiency in mice: relevance to apo E-related disorders in humans. FASEB J 2001;15:2623-30. https://doi.org/10.1096/fj.01-0463com
  11. Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 2012;125:1905-19. https://doi.org/10.1161/CIRCULATIONAHA.111.066589
  12. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis 2017;11:215-25. https://doi.org/10.1177/1753944717711379
  13. Ji X, Shi S, Liu B, Shan M, Tang D, Zhang W, Zhang Y, Zhang L, Zhang H, Lu C, et al. Bioactive compounds from herbal medicines to manage dyslipidemia. Biomed Pharmacother 2019;118:109338.
  14. Hu Y, Chen X, Hu M, Zhang D, Yuan S, Li P, Feng L. Medicinal and edible plants in the treatment of dyslipidemia: advances and prospects. Chin Med 2022;17:113.
  15. Yu H, Qiu JF, Ma LJ, Hu YJ, Li P, Wan JB. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food Chem Toxicol 2017;108:375-91. https://doi.org/10.1016/j.fct.2016.11.023
  16. Liu S, Jin X, Shang Y, Wang L, Du K, Chen S, Li J, He J, Fang S, Chang Y. A comprehensive review of the botany, ethnopharmacology, phytochemistry, pharmacology, toxicity and quality control of Perillae Fructus. J Ethnopharmacol 2023;304:116022.
  17. Park SH, Paek JH, Shin D, Lee JY, Lim SS, Kang YH. Purple perilla extracts with α-asarone enhance cholesterol efflux from oxidized LDL-exposed macrophages. Int J Mol Med 2015;35:957-65. https://doi.org/10.3892/ijmm.2015.2101
  18. Park SH, Shin D, Lim SS, Lee JY, Kang YH. Purple perilla extracts allay ER stress in lipid-laden macrophages. PLoS One 2014;9:e110581.
  19. Paek JH, Shin KH, Kang YH, Lee JY, Lim SS. Rapid identification of aldose reductase inhibitory compounds from Perilla frutescens. BioMed Res Int 2013;2013:679463.
  20. Wang Z, Kwon SH, Hwang SH, Kang YH, Lee JY, Lim SS. Competitive binding experiments can reduce the false positive results of affinity-based ultrafiltration-HPLC: a case study for identification of potent xanthine oxidase inhibitors from Perilla frutescens extract. J Chromatogr B Analyt Technol Biomed Life Sci 2017;1048:30-7. https://doi.org/10.1016/j.jchromb.2017.02.001
  21. Rodriguez-Paez L, Juarez-Sanchez M, Antunez-Solis J, Baeza I, Wong C. Alpha-asarone inhibits HMGCoA reductase, lowers serum LDL-cholesterol levels and reduces biliary CSI in hypercholesterolemic rats. Phytomedicine 2003;10:397-404. https://doi.org/10.1078/0944-7113-00274
  22. Hwang SH, Kwon SH, Kang YH, Lee JY, Lim SS. Rapid high performance liquid chromatography determination and optimization of extraction parameters of the α-asarone isolated from Perilla frutescens L. Molecules 2017;22:270.
  23. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 1994;14:133-40. https://doi.org/10.1161/01.ATV.14.1.133
  24. Lloyd CM, Phillips ARJ, Cooper GJS, Dunbar PR. Three-colour fluorescence immunohistochemistry reveals the diversity of cells staining for macrophage markers in murine spleen and liver. J Immunol Methods 2008;334:70-81. https://doi.org/10.1016/j.jim.2008.02.005
  25. Lo Sasso G, Schlage WK, Boue S, Veljkovic E, Peitsch MC, Hoeng J. The Apoe(-/-) mouse model: a suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. J Transl Med 2016;14:146.
  26. De Giorgi M, Li A, Hurley A, Barzi M, Doerfler AM, Cherayil NA, Smith HE, Brown JD, Lin CY, Bissig KD, et al. Targeting the Apoa1 locus for liver-directed gene therapy. Mol Ther Methods Clin Dev 2021;21:656-69. https://doi.org/10.1016/j.omtm.2021.04.011
  27. Ganesan LP, Mates JM, Cheplowitz AM, Avila CL, Zimmerer JM, Yao Z, Maiseyeu A, Rajaram MV, Robinson JM, Anderson CL. Scavenger receptor B1, the HDL receptor, is expressed abundantly in liver sinusoidal endothelial cells. Sci Rep 2016;6:20646.
  28. Leiva A, Verdejo H, Benitez ML, Martinez A, Busso D, Rigotti A. Mechanisms regulating hepatic SR-BI expression and their impact on HDL metabolism. Atherosclerosis 2011;217:299-307. https://doi.org/10.1016/j.atherosclerosis.2011.05.036
  29. Mahley RW. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med (Berl) 2016;94:739-46. https://doi.org/10.1007/s00109-016-1427-y
  30. Chowaniec Z, Skoczynska A. Plasma lipid transfer proteins: the role of PLTP and CETP in atherogenesis. Adv Clin Exp Med 2018;27:429-36. https://doi.org/10.17219/acem/67968
  31. Manthei KA, Patra D, Wilson CJ, Fawaz MV, Piersimoni L, Shenkar JC, Yuan W, Andrews PC, Engen JR, Schwendeman A, et al. Structural analysis of lecithin:cholesterol acyltransferase bound to high density lipoprotein particles. Commun Biol 2020;3:28.
  32. Rong S, Zhao S, Kai X, Zhang L, Zhao Y, Xiao X, Bao W, Liu L. Procyanidins extracted from the litchi pericarp attenuate atherosclerosis and hyperlipidemia associated with consumption of a high fat diet in apolipoprotein-E knockout mice. Biomed Pharmacother 2018;97:1639-44. https://doi.org/10.1016/j.biopha.2017.10.139
  33. Li J, Zhong Z, Yuan J, Chen X, Huang Z, Wu Z. Resveratrol improves endothelial dysfunction and attenuates atherogenesis in apolipoprotein E-deficient mice. J Nutr Biochem 2019;67:63-71. https://doi.org/10.1016/j.jnutbio.2019.01.022
  34. Wu C, Luan H, Zhang X, Wang S, Zhang X, Sun X, Guo P. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages. PLoS One 2014;9:e95452.
  35. Park SH, Kang MK, Choi YJ, Kim YH, Antika LD, Kim DY, Lee EJ, Lim SS, Kang YH. α-Asarone blocks 7β-hydroxycholesterol-exposed macrophage injury through blocking elF2α phosphorylation and prompting beclin-1-dependent autophagy. Oncotarget 2017;8:7370-83. https://doi.org/10.18632/oncotarget.14566
  36. Park SH, Kang MK, Choi YJ, Kim YH, Antika LD, Lim SS, Kang YH. Dietary compound α-asarone alleviates ER stress-mediated apoptosis in 7β-hydroxycholesterol-challenged macrophages. Mol Nutr Food Res 2016;60:1033-47. https://doi.org/10.1002/mnfr.201500750
  37. Farrell N, Norris G, Lee SG, Chun OK, Blesso CN. Anthocyanin-rich black elderberry extract improves markers of HDL function and reduces aortic cholesterol in hyperlipidemic mice. Food Funct 2015;6:1278-87. https://doi.org/10.1039/C4FO01036A
  38. Xu M, Lv C, Wang H, Lu Q, Ye M, Zhu X, Liu R. Peanut skin extract ameliorates high-fat diet-induced atherosclerosis by regulating lipid metabolism, inflammation reaction and gut microbiota in ApoE-/- mice. Food Res Int 2022;154:111014.
  39. Olszanecki R, Jawien J, Gajda M, Mateuszuk L, Gebska A, Korabiowska M, Chlopicki S, Korbut R. Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. J Physiol Pharmacol 2005;56:627-35.
  40. Huang W, Zeng Z, Lang Y, Xiang X, Qi G, Lu G, Yang X. Cannabis seed oil alleviates experimental atherosclerosis by ameliorating vascular inflammation in apolipoprotein-E-deficient mice. J Agric Food Chem 2021;69:9102-10. https://doi.org/10.1021/acs.jafc.0c07251
  41. Peng Y, Xu J, Zeng Y, Chen L, Xu XL. Polydatin attenuates atherosclerosis in apolipoprotein E-deficient mice: role of reverse cholesterol transport. Phytomedicine 2019;62:152935.
  42. Millar CL, Duclos Q, Blesso CN. Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function. Adv Nutr 2017;8:226-39. https://doi.org/10.3945/an.116.014050