DOI QR코드

DOI QR Code

Effect of ZnO Nanoparticle Presence on SCC Mitigation in Alloy 600 in a Simulated Pressurized Water Reactors Environment

  • Sung-Min Kim (Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Woon Young Lee (Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Sekown Oh (Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Sang-Yul Lee (Department of Materials Engineering, Korea Aerospace University)
  • Received : 2023.12.15
  • Accepted : 2023.12.19
  • Published : 2023.12.31

Abstract

This study investigates the synthesis, characterization, and application of zinc oxide (ZnO) nanoparticles for corrosion resistance and stress corrosion cracking (SCC) mitigation in high-temperature and high-pressure environments. The ZnO nanoparticles are synthesized using plasma discharge in water, resulting in rod-shaped particles with a hexagonal crystal structure. The ZnO nanoparticles are applied to Alloy 600 tubes in simulated nuclear power plant atmospheres to evaluate their effectiveness. X-ray diffraction and X-ray photoelectron spectroscopy analysis reveals the formation of thermodynamically stable ZnCr2O4and ZnFe2O4 spinel phases with a depth of approximately 35 nm on the surface after 240 hours of treatment. Stress corrosion cracking (SCC) mitigation experiments reveal that ZnO treatment enhances thermal and mechanical stability. The ZnO-treated specimens exhibit increased maximum temperature tolerance up to 310 ℃ and higher-pressure resistance up to 60 bar compared to non-treated ZnO samples. Measurements of crack length indicate reduced crack propagation in ZnO-treated specimens. The formation of thermodynamically stable Zn spinel structures on the surface of Alloy 600 and the subsequent improvements in surface properties contribute to the enhanced durability and performance of the material in challenging high-temperature and high-pressure environments. These findings have significant implications for the development of corrosion-resistant materials and the mitigation of stress corrosion cracking in various industries.

Keywords

Acknowledgement

This work was supported by the Ministry of Trade, Industry and Energy (MOTIE) of Korea (No. 20010488)

References

  1. E. Chajduk, A. B. Czajka, Corrosion mitigation in coolant systems in nuclear power plants, Progress in Nuclear Energy, 88 (2016) 1-9. https://doi.org/10.1016/j.pnucene.2015.11.011
  2. T.M. Ahn, Long-term initiation time for stress -corrosion cracking of alloy 600 with implications in stainless steel: Review and analysis for nuclear application, Progress in Nuclear Energy, 137 (2021) 103760.
  3. R.M. Carranza, M.A. Rodriguez, Crevice corrosion of nickel-based alloys considered as engineering barriers of geological repositories, NPJ Materials Degradation, 1 (2017) 1-9. https://doi.org/10.1038/s41529-017-0001-6
  4. P. Singh, L.K. Singh, Modeling and measuring common cause failures in measurement of reliability of nuclear power plant systems, IEEE Transactions on Instrumentation and Measurement, 70 (2021) 3001608.
  5. S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, Acta Materialia, 61 (2013) 735-758. https://doi.org/10.1016/j.actamat.2012.11.004
  6. A.M. Stutzman, A.K. Rai, B. Alexandreanu, P.E. Albert, E.J. Sun, M.L. Schwartz, E.W. Reutzel, J.F. Tressler, T.P. Medill, D.E. Wolfe, Laser glazing of cold sprayed coatings for the mitigation of stress corrosion cracking in light water reactor (LWR) applications, Surface and Coatings Technology, 386 (2020) 125429.
  7. D. Karthik, S. Swaroop, Laser shock peening enhanced corrosion properties in a nickel based Inconel 600 superalloy, Journal of Alloys and Compounds, 694 (2017) 1309-1319. https://doi.org/10.1016/j.jallcom.2016.10.093
  8. A.P.P. Alice, O. Alao, O. Sanni, The influence of nanoparticle inhibitors on the corrosion protection of some industrial metals, Journal of Bio- and Tribo-Corrosion, 8 (2022) 1-16. https://doi.org/10.1007/s40735-021-00598-1
  9. Y.T.R. Shi, K. Gao, L. Qiao, X. Pang, High stress corrosion cracking resistance of in-situ nanoparticle strengthened steel, Corrosion Communications, 5 (2022) 14-24. https://doi.org/10.1016/j.corcom.2021.11.006
  10. B.P.P. Jain, J. Bhawsar, Potential of nanoparticles as a corrosion inhibitor: a review, Journal of Bio- and Tribo-Corrosion, 6(2020) 1-12. https://doi.org/10.1007/s40735-019-0297-6
  11. S.S. Kim, J.J. Yeob, Y.S. Kim, Susceptibility to severe PWSCC (primary water stress corrosion cracking) of LTMA (low temperature mill anneal) alloy 600, Korean Journal of Metals and Materials, 58 (2020) 815-821. https://doi.org/10.3365/KJMM.2020.58.12.815
  12. S.M. Kim, Y.G. Jo, M.H. Lee, N. Saito, J.W. Kim, S.Y. Lee, The plasma-assisted formation of Ag@Co3O4 core-shell hybrid nanocrystals for oxygen reduction reaction, Electrochimica Acta, 233 (2017) 123-133. https://doi.org/10.1016/j.electacta.2017.03.049
  13. S.M. Kim, Y.K. Heo, K.T. Bae, Y.T. Oh, M.H. Lee, S.Y. Lee, In situ formation of nitrogen-doped onion-like carbon as catalyst support for enhanced oxygen reduction activity and durability, Carbon, 101 (2016) 420-430. https://doi.org/10.1016/j.carbon.2016.02.022
  14. Y.G. Jo, S.M. Kim, S.Y. Lee, Size-tunable palladium nanoparticles synthesized using the solution plasma process and their electrocatalytic activities, Japanese Journal of Applied Physics, 55 (2016) 01AE01.
  15. S.M. Kim, Y.G. Jo, S.Y. Lee, The composition-controlled synthesis of Pt-Ag bimetallic nanochains for catalytic methanol oxidation, Electrochimica Acta, 174 (2015) 1244-1252. https://doi.org/10.1016/j.electacta.2015.06.114
  16. S.M. Kim, A.R. Cho, S.Y. Lee, Characterization and electrocatalytic activity of Pt-M (M=Cu, Ag, and Pd) bimetallic nanoparticles synthesized by pulsed plasma discharge in water, Journal of Nanoparticle Research, 17 (2015).
  17. Y.K. Kwon, Y.K. Kang, D.Y. Kim, Microwave-assisted organocatalytic synthesis of tetrahydroquinolines via hydride transfer and cyclization, addition for carbon-free aluminum electrolysis, Chemical Engineering Journal, 400 (2020) 1773-1776.
  18. J.B. Huang, X.H. Liu, E.H. Han, X.Q. Wu, Influence of Zn on oxide films on alloy 690 in borated and lithiated high temperature water, Corrosion Science, 53 (2011) 3254-3261. https://doi.org/10.1016/j.corsci.2011.06.001
  19. Z.Y. Li, K. Wang, B.Z. Ge, Z.J. Zhang, Z.L. Wei, Z.Q. Shi, G.J. Qiao, Synergistic enhancement of sinterability and corrosion resistance of ZnCrO spinel by TiO addition for carbon-free aluminum electrolysis, Chemical Engineering Journal, 400 (2020) 125924.
  20. Z.Y. Li, Z.Q. Shi, Z.J. Zhang, R.D. Liu, Y. Liu, J. Li, G.J. Qiao, Corrosion resistance of the ZnCr2O4 spinel in NaF-KF-AlF3 bath, Corrosion Science, 131 (2018) 199-207. https://doi.org/10.1016/j.corsci.2017.11.020
  21. O.H.A.Elkader, N.M. Deraz, L. Aleya, Effects of zinc substitution on the microstructural and magnetic characteristics of cubic symmetry nickel ferrite system, Symmetry, 15 (2023) 975.
  22. M. Gauthier, T.J. Carney, A. Grimaud, L. Giordano, N. Pour, H.H. Chang, D.P. Fenning, S.F. Lux, O. Paschos, C. Bauer, F. Magia, S. Lupart, P. Lamp, Y. Shao-Horn, Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights, The Journal of Physical Chemistry Letters, 6 (2015) 4653-4672.
  23. X.Y. Fu, J.P. Xiao, Toward understanding and simplifying the reaction network of ketene production on ZnCr2O4 spinel catalysts, The Journal of Physical Chemistry C, 125 (2021) 24902-24914.
  24. Y. Fu, Y.M. Ni, W.H. Cui, X.D. Fang, Z.Y. Chen, Z.P. Liu, W.L. Zhu, Z.M. Liu, Insights into the size effect of ZnCr2O4 spinel oxide in composite catalysts for conversion of syngas to aromatics, Green Energy & Environment, 8 (2023) 530-537.
  25. P. Zhao, M. Ehara, A. Satsuma, S. Sakaki, Theoretical study of the propene combustion catalysis of chromite spinels: reaction mechanism and relation between the activity and electronic structure of spinels, The Journal of Physical Chemistry C, 125 (2021) 25983-26002.