DOI QR코드

DOI QR Code

Rotary CVD Process for Surface Treatment of Powders

분말소재의 표면처리를 위한 회전형 CVD 공정

  • Jong-Hwan Lee (Interdisciplinary Program in Advanced Functional Materials and Devices Development, Kangwon National University) ;
  • Goo-Hwan Jeong (Interdisciplinary Program in Advanced Functional Materials and Devices Development, Kangwon National University)
  • 이종환 (강원대학교 대학원 고기능 소재 및 소자 협동과정) ;
  • 정구환 (강원대학교 대학원 고기능 소재 및 소자 협동과정)
  • Received : 2023.12.08
  • Accepted : 2023.12.19
  • Published : 2023.12.31

Abstract

This paper reviews the potentials of a rotary chemical vapor deposition (RCVD) process for nanomaterial synthesis and coating on powder-based materials. The rotary reactor offers a significant improvement over traditional CVD methods having horizontal and fixed reaction chambers. The RCVD system yields enhanced productivity and surface coating uniformity of nanoparticles applied in various purposes, such as efficient heat dissipation, surface hardness enhancement, and enhanced energy storage performances. The effectiveness of the RCVD system would open up new possibilities in various applications because uniform coating on powder-based materials with massive productivity is inevitable to develop multi-functional materials with high reliability.

Keywords

References

  1. A. Calka, A. Radlinski, R. Shanks, A. Pogany, Formation of titanium silicides by mechanical alloying, Journal of Materials Science, 10 (1991) 734-737.
  2. A. Inoue, High strength bulk amorphous alloys with low critical cooling rates (overview), Materials Transactions JIM, 36 (1995) 866-875. https://doi.org/10.2320/matertrans1989.36.866
  3. L. L. Shaw, Processing nanostructured materials: an overview, JOM, 52 (2000) 41-45. https://doi.org/10.1007/s11837-000-0068-2
  4. B. Fegley, P. White, H. Bowen, Processing and characterization of ZrO2 and Y-doped ZrO2 powders, American Ceramic Society Bulletin, 64 (1985) 1115-1120.
  5. W. Groot Zevert, A. Winnubst, G. Theunissen, A. Burggraaf, Powder prep-aration and compaction behaviour of finegrained Y-TZP, Journal of Materials Science, 25 (1990) 3449-3455. https://doi.org/10.1007/BF00575369
  6. X. Z. Ding, Z. Z. Qi, Y. Z. He, Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a solgel process, Journal of Materials Science, 14 (1995) 21-22.
  7. G. Koch, D. Zhang, A. Leipertz, M. Grischke, K. Trojan, H. Dimigen, Study on plasma enhanced CVD coated material to promote dropwise condensation of steam, International Journal of Heat and Mass Transfer, 41 (1998) 1899-1906. https://doi.org/10.1016/S0017-9310(97)00356-6
  8. S. Ma, Y. Li, K. Xu, Investigation on processing of industrial set-up plasma enhanced chemical vapor deposition with pulsed d.c. power, Surface and Coatings Technology, 131 (2000) 131-135. https://doi.org/10.1016/S0257-8972(00)00750-7
  9. D. M. King, J. A. Spencer II, X. Liang, L. F. Hakim, A. W. Weimer, Atomic layer deposition on particles using a fluidized bed reactor with in situ mass spectrometry, Surface and Coatings Technology, 201 (2007) 9163-9171. https://doi.org/10.1016/j.surfcoat.2007.05.002
  10. H. O. Pierson, Handbook of Chemical Vapor Deposition, William Andrew, second Ed, Elsevier Science & Technology Books, New York (1999) 25.
  11. T. Goto, J. R. Vargas-Garcia, T. Hirai, Preparation of iridium clusters by MOCVD and their electrochemical properties, Materials Science and Engineering: A, 217 (1996) 223-226.
  12. M. Becht, T. Morishita, Thin Film Growth and Microstructure Analysis of CeOz Prepared by MOCVD, Chemical Vapor Deposition, 2 (1996) 191-197. https://doi.org/10.1002/cvde.19960020508
  13. V. Paserin, S. Baksa, A. Zaitsev, J. Shu, F. Shojai, W. Nowosiadly, Potential for mass production of nickel-based nanomaterials by carbonyl process, Journal of Nanoscience and Nanotechnology, 8 (2008) 4049.
  14. F. Danafar, A. Fakhru'l-Razi, M. A. M. Salleh, D. R. A. Biak, Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review, Chemical Engineering Journal, 37 (2009) 155.
  15. C. D. Taboada, J. Batista, A. Pintar, J. Pintar, Preparation, Characterization and catalytic properties of carbon nanofiber-supported Pt, Pd, Ru monometallic particles in aqueous-phase reactions, Applied Catalysis B: Environmental, 89 (2009) 375-382. https://doi.org/10.1016/j.apcatb.2008.12.016
  16. T. Goto, J. R. Vargas-Garcia, T. Hirai, Electrochemical properties of iridium-carbon nano composite films prepared by MOCVD, Scripta Materialia, 44 (2001) 1187-1190. https://doi.org/10.1016/S1359-6462(01)00683-2
  17. L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Choi, B. H. Hong, Z. Liu, Chemical vapour deposition, Nature Reviews Methods Primers, 1 (2021) 5.
  18. G. Harbeke, L. Krausbauer, E. Steigmeier, A. Widmer, H. Kappert, G. Neugebauer, Growth and physical properties of LPCVD polycrystalline silicon films, Journal of the Electrochemical Society, 131 (1984) 675.
  19. S. Jacques, A. Guette, X. Bourrat, F. Langlais, C. Guimon, C. Labrugere, LPCVD and characterization of boroncontaining pyrocarbon materials, Carbon, 34 (1996) 1135-1143. https://doi.org/10.1016/0008-6223(96)00075-9
  20. G. Puyoo, F. Teyssandier, R. Pailler, C. Labrugere, G. Chollon, Boron carbonitride coatings synthesized by LPCVD, structure and properties, Carbon, 122 (2017) 19-46. https://doi.org/10.1016/j.carbon.2017.06.024
  21. N. Nakao, K. Kitagawa, M. Sasaki, T. Hirai, High-pressure chemical vapor deposition for preparation of carbon, Carbon, 33 (1995) 183-191. https://doi.org/10.1016/0008-6223(94)00126-K
  22. R. He, T. D. Day, J. R. Sparks, N. F. Sullivan, J. V. Badding, High pressure chemical vapor deposition of hydrogenated amorphous silicon films and solar cells, Advanced Materials, 28 (2016) 5939-5942. https://doi.org/10.1002/adma.201600415
  23. J. J. Kim, B. J. Lee, S. H. Lee, G. H. Jeong, Size engineering of metal nanoparticles to diameter-specified growth of single-walled carbon nanotubes with horizontal alignment on quartz, Nanotechnology, 23 (2012) 105607.
  24. G. H. Jeong, N. Satake, T. Kato, T. Hirata, R. Hatakeyama, K. Tohji, Simple methods for site-controlled carbon nanotube growth using radio-frequency plasma-enhanced chemical vapor deposition, Applied Physics A, 79 (2004) 85-87. https://doi.org/10.1007/s00339-004-2599-9
  25. T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, Structure control of carbon nanotubes using radio-frequency plasma enhanced chemical vapor deposition, Thin Solid Films, 457 (2004) 2-6. https://doi.org/10.1016/j.tsf.2003.12.002
  26. B. Caussat, C. Vahlas, CVD and powders: a great potential to create new materials, Chemical Vapor Deposition, 13 (2007) 443-445. https://doi.org/10.1002/cvde.200790025
  27. K. Choy, Chemical vapour deposition of coatings, Progress in Materials Science, 48 (2003) 57-170. https://doi.org/10.1016/S0079-6425(01)00009-3
  28. M. Becht, T. Morishita, Thin film growth and microstructure analysis of CeOz prepared by MOCVD, Chemical Vapor Deposition, 2 (1996) 191-197. https://doi.org/10.1002/cvde.19960020508
  29. V. Paserin, S. Baksa, A. Zaitsev, J. Shu, F. Shojai, W. Nowosiadly, Potential for mass production of nickel-based nanomaterials by carbonyl process, Journal of Nanoscience and Nanotechnology, 8 (2008) 4049.
  30. F. Danafar, A. Fakhru'l-Razi, M. A. M. Salleh, D. R. A. Biak, Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review, Chemical Engineering Journal, 37 (2009) 155.
  31. J. C. Hierso, P. Serp, R. Feurer, P. Kalck, MOCVD of rhodium, palladium and platinum complexes on fuidized divided substrates: Novel process for one-step preparation of noble-metal catalysts, Applied Organometallic Chemistry, 12 (1998) 161172.
  32. J. C. Hierso, R. Feurer, J. Poujardieu, Y. Kihn, P. Kalck, Metal-organic chemical vapor deposition in a fluidized bed as a versatile method to prepare layered bimetallic nanoparticles, Journal of Molecular Catalysis A: Chemical, 135 (1998) 321325.
  33. P. Serp, P. Kalck, R. Feurer, Chemical vapor deposition methods for the controlled preparation of supported catalytic materials, Chemical Reviews, 102 (2002) 30853128.
  34. D. Longrie, D. Deduytsche, C. Detavernier, Reactor concepts for atomic layer deposition on agitated particles: A review, Journal of Vacuum Science and Technology, 32 (2014) 010802.
  35. J. Wang, M. N. Obrovac, Lab-scale chemical vapor deposition onto powders, AIP Advances, 12 (2022) 075209.
  36. C. Vahlas, B. Caussat, P. Serp, G. N. Angelopoulos, Principles and applications of CVD powder technology, Materials Science and Engineering R: Reports, 53 (2006) 1-72. https://doi.org/10.1016/j.mser.2006.05.001
  37. J. A. McCormick, K. P. Rice, D.F. Paul, A. W. Weimer, S. M. George, Analysis of Al2O3 atomic layer deposition on ZrO2 nanoparticles in a rotary reactor, Chemical Vapor Deposition, 13 (2007) 491-498. https://doi.org/10.1002/cvde.200606563
  38. S. Tu, Q. Wang, C. S. Ramachandran, Parametric investigation of in-situ synthesis of carbon nanotubes on Al2O3 powder by the rotary chemical vapor deposition method, Ceramics International, 48 (2022) 28258-28267. https://doi.org/10.1016/j.ceramint.2022.06.131
  39. P. R. von Rohr, B. Borer, Plasma-enhanced CVD for particle synthesis using circulating fluidized bed technology, Chemical Vapor Deposition, 13 (2007) 499-506. https://doi.org/10.1002/cvde.200706615
  40. A. W. Weimer, Particle atomic layer deposition, Journal of Nanoparticle Research, 21 (2019) 9.
  41. R. Liu, J. Zhao, X. Yang, M. Liu, J. Chang, Y. Shao, B. Liu, Mass production of 3D connective graphene networks by fluidized bed chemical vapor deposition and its application in high performance lithium-sulfur battery, Nanomaterials, 12 (2021) 150.
  42. H. Katsui, T. Goto, Coatings on ceramic powders by rotary chemical vapor deposition and sintering of the coated powders, Journal of the Ceramic Society of Japan, 126 (2018) 413-420.
  43. S. Adhikari, S. Selvaraj, D. H. Kim, Progress in powder coating technology using atomic layer deposition, Advanced Materials Interfaces, 5 (2018) 1800581.
  44. K. C. Yung, H. Liem, H. S. Choy, W. K. Lun, Thermal performance of high brightness LED array package on PCB, International Communications in Heat and Mass Transfer, 37 (2010) 1266-1272. https://doi.org/10.1016/j.icheatmasstransfer.2010.07.023
  45. A. L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics, Materials Today, 17 (2014) 163-174. https://doi.org/10.1016/j.mattod.2014.04.003
  46. J. Kim, J. Oh, H. Lee, Review on battery thermal management system for electric vehicles, Applied Thermal Engineering, 149 (2019) 192-212. https://doi.org/10.1016/j.applthermaleng.2018.12.020
  47. A. J. Mcnamara, Y. Joshi, Z. M. Zhang, Thermal resistance of thermal conductive adhesive anchored carbon nanotubes interface material, International Journal of Thermal Sciences, 96 (2015) 221-226. https://doi.org/10.1016/j.ijthermalsci.2015.05.006
  48. J. H. Lee, H. H. Han, G. H. Jeong, Investigation of direct growth behavior of carbon nanotubes on alumina powders to use as heat dissipation materials, Journal of Surface Science and Engineering, 56 (2023) 55-61.
  49. N. Wang, Z. Yang, F. Xu, K. Thummavichai, H. Chen, Y. Xia, Y. Zhu, A generic method to synthesise graphitic carbon coated nanoparticles in large scale and their derivative polymer nanocomposites, Scientific Reports, 7 (2017) 11829.
  50. J. H. Lee, H. H. Han, J. M. Seo, G. H. Jeong, One-Pot fabrication of nanocomposites composed of carbon nanotubes and alumina powder using a rotatable chemical vapor deposition system, Materials, 16 (2023) 2735.
  51. Q. Xiao, X. Yi, B. Jiang, Z. Qin, J. Hu, Y. Jiang, H. Liu, B. Wang, D. Yi, Insitu synthesis of graphene on surface of copper powder by rotary CVD and its application in fabrication of reinforced Cu-matrix composites, Advanced Material Science, 2 (2017) 1-6. https://doi.org/10.15761/AMS.1000123
  52. B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zuniga, P. Richer, E.J. Lavernia, Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings, Surface and Coatings Technology, 201 (2006) 3422-3429. https://doi.org/10.1016/j.surfcoat.2006.07.232
  53. K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, B. Fugetsu, Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes, Composites Science and Technology, 69 (2009) 1077-1081. https://doi.org/10.1016/j.compscitech.2009.01.026
  54. J. Zhang, T. Goto, Fabrication of Al2O3-Cu nanocomposites using rotary chemical vapor deposition and spark plasma sintering, Journal of Nanomaterials, 2015 (2015) 1-7.
  55. S. Choi, J. H. Han, B. J. Choi, Atomic layer deposition for powder coating, Journal of Powder Materials, 26 (2019) 243-250. https://doi.org/10.4150/KPMI.2019.26.3.243
  56. W. Li, E. M. Erickson, A. Manthiram, High-nickel layered oxide cathodes for lithium-based automotive batteries, Nature Energy, 5 (2020) 26-34. https://doi.org/10.1038/s41560-019-0513-0
  57. C. Qi, S. Li, Z. Yang, Z. Xiao, L. Zhao, F. Yang, G. Ning, X. Ma, C. Wang, J. Xu, Suitable thickness of carbon coating layers for silicon anode, Carbon, 186 (2022) 530-538. https://doi.org/10.1016/j.carbon.2021.10.062
  58. D. S. Kim, S. H. Kim, J. Y. Hong, Influence of oxidation on the electrochemical properties of silicon oxide-based carbon composites for anode materials of lithium-ion batteries, Carbon Trends, 12 (2023) 100279.
  59. J. Yu, J. Yang, X. Feng, H. Jia, J. Wang, W. Lu, Uniform carbon coating on silicon nanoparticles by dynamic CVD process for electrochemical lithium storage, Industrial & Engineering Chemistry Research, 53 (2014) 12697-12704. https://doi.org/10.1021/ie5010465