과제정보
이 논문은 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구이며(No. 2022R1A6A1A03052954), 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.RS-2023-00231158, 비전기술을 활용한 편물 검단 및 환편기 예지 보전 원격제어 통합모니터링 플랫폼).
참고문헌
- 화학물질 사고현황 및 사례 [Internet], https://icis.me.go.kr/search/searchType2.do(화학물질안전원).
- 가스사고 발생현황 및 사고일람표 [Internet], https://www.kgs.or.kr/kgs/abcc/board.do(한국가스안전공사).
- A. M. Adesina, W. K. Fung, and A. Karnik, "Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches," in Sensors, Vol.19, No.11, pp.2548, 2019.
- P. Narkhede, R. Walambe, P. Chandel, S. Mandaokar, and K. Kotecha, "MultimodalGasData: Multimodal dataset for gas detection and classification," Data, Vol.7, No.8, pp.112, 2022.
- M. M. Khan, "Sensor-based gas leakage detector system," in Engineering Proceedings, Vol.2, No.1, pp.28, 2020.
- J. M. Ahn, G. Y. Kim, and D. J. Kim, "A real time urban gas leakage prediction and monitoring system based on deep learning," Journal of the Korean Institute of Plant Engineering, Vol.26, No.4, pp.45-53, 2021.
- J. Shi, Y. Chang, C. Xu, F. I. Khan, G. Chen, and C. Li, "Real-time leak detection using an infrared camera and Faster R-CNN technique," Computers & Chemical Engineering, Vol.135, pp.106780, 2020.
- R. Xiao, Q. Hu, and J. Li, "Leak detection of gas pipelines using acoustic signals based on wavelet transform and Support Vector Machine," Measurement, Vol.146, pp.479-489, 2019. https://doi.org/10.1016/j.measurement.2019.06.050
- P. Narkhede, R. Walambe, S. Mandaokar, P. Chandel, K. Kotecha, and G. Ghinea, "Gas detection and identification using multimodal artificial intelligence based sensor fusion," Applied System Innovation, Vol.4, No.1, pp.3, 2021.
- S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, Vol.9, No.8, pp.1735-1780, 2010.
- L. Eren, T. Ince, and S. Kiranyaz, "A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier," Journal of Signal Processing Systems, Vol.91, pp.179-189, 2019. https://doi.org/10.1007/s11265-018-1378-3
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint, arXiv:1409.1556, 2014.
- B. Koonce, "Convolutional neural networks with swift for tensorflow: Image recognition and dataset categorization," Springer, 1st ed., CA: Apress Berkeley, pp.51-61, 2021.
- C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, pp.1-9, 2015.
- T. Baltrusaitis, C. Ahuja, and L. P. Morency, "Multimodal machine learning: A survey and taxonomy," in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.41, No.2, pp.423-443, 2019. https://doi.org/10.1109/TPAMI.2018.2798607
- K. Gadzicki, R. Khamsehashari, and C. Zetzsche, "Early vs late fusion in multimodal convolutional neural networks," in IEEE 23rd international conference on information fusion (FUSION2020), Virtual, pp.1-6, 2020.
- K. Liu, Y. Li , N. Xu, and P. Natarajan, "Learn to combine modalities in multimodal deep learning," in arXiv preprint, arXiv:1805.11730, 2018.
- P. K. Atrey, M. A. Hossain, A. E. Saddik, and M. Kankanhalli, "Multimodal fusion for multimedia analysis: A survey," Multimedia Systems, Vol.16, pp.345-379, 2010. https://doi.org/10.1007/s00530-010-0182-0
- R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-cam: Visual explanations from deep networks via gradient-based localization," in Proceedings of the IEEE International Conference on Computer Vision, Venecia, pp.618-626, 2017.