DOI QR코드

DOI QR Code

Design of lattice structure for controlling elastic modulus in metal additive manufacturing

금속 적층제조에서의 격자구조 설계변수에 따른 탄성계수 분석

  • Received : 2023.12.07
  • Accepted : 2023.12.14
  • Published : 2023.12.31

Abstract

With the high design freedom of the additive manufacturing process, there is a growing interest in multi-dimensional lattice structures among researchers, who are studying intricate structural modeling that is challenging to produce using conventional manufacturing processes. In the case of titanium alloy implants for human insertion, a multi-dimensional lattice structure is employed to ensure compatibility with bones, adjusting strength and elastic modulus to levels similar to those of bones. Therefore, securing a database on the mechanical properties based on lattice structure design variables and the development of related simulation techniques are believed to efficiently facilitate the customization of implants. In this study, lattice structures were additively manufactured using Ti-6Al-4V alloy, and the elastic modulus was measured based on design parameters. The results were compared with simulations, and an approach to finite element analysis for accurate prediction of the elastic modulus was proposed.

적층제조 공정의 높은 설계자유도에 의해 기존 공정으로 성형이 어려운 형상이 적용된 제품의 제작이 가능해짐에 따라 복잡한 구조를 갖는 기능성 구조에 대한 연구자들의 관심이 증가되고 있다. 타이타늄 합금으로 제작되는 인체 삽입형 임플란트의 경우, 뼈와의 친화성을 확보하기 위해 다차원 격자구조를 적용하여 강도 및 탄성계수를 뼈와 유사한 수준으로 조절하고 있다. 따라서 격자구조의 설계 변수에 따른 기계적 특성에 대한 데이터 베이스 확보 및 관련 시뮬레이션 기술 개발은 개인 맞춤형 인플란트 제작을 효율적으로 수행할 수 있게 할 것이라 생각된다. 따라서 본 연구에서는 Ti-6Al-4V 합금 소재를 적용하여 설계변수별 격자구조체를 제작하고 이에 대한 탄성계수를 측정하였으며 그 결과를 시뮬레이션과 비교하여 정확한 탄성계수 예측을 위한 유한요소해석 방안을 제시하였다.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 기업수요기반생산기술 실용화사업(과제번호 JA230014)의 지원을 받아 수행된 연구 결과입니다.

References

  1. K.P. Lee, K.M. Kim, S.H. Kang, J.H. Han and K.H. Jung, "Optimization for high speed manufacturing of ti64 alloy by a selective laser melting technique", J. Korean Cryst. Growth Cryst. 28 (2018) 217. 
  2. B. Liu, H. Wang, N. Zhang, M. Zhang and C.K. Cheng, "Femoral stems with porous lattice structures: a review", Front. Bioeng. Biotechnol. 9 (2021) 772539. 
  3. X.Z. Zhang, M. Leary, H.P. Tang, T. Song and M. Qian, "Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges", Curr. Opin. Solid State Mater. Sci. 22(3) (2018) 75. 
  4. L. Bai, C. Gong, X. Chen, Y. Sun, J. Zhang, L. Cai and S.Q. Xie, "Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications", Metals 9 (2019) 1004. 
  5. D. Mahmoud and M.A. Elbestawi, "Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review", J. Manuf. Mater. Process. 1 (2017) 13. 
  6. O. Bittredge, H. Hassanin, M.A. El-Sayed, H.M. Eldessouky, N.A. Alsaleh, N.H. Alrasheedi and M. Ahmadein, "d", Materials 15 (2022) 3095. 
  7. A.A. Al-Tamimi, H. Almeida and P. Bartolo, "Structural optimisation for medical implants through additive manufacturing", Prog. Addit. Manuf. 5 (2020) 95. 
  8. L.E. Murr, S.M. Gaytan, E. Martinez, F. Medina and R.B. Wicker, "Next generation orthopaedic implants by additive manufacturing using electron beam melting", Int. J. Biomater. 2012 (2012) 14. 
  9. S. Bose, S. Vahabzadeh and A. Bandyopadhyay, "Bone tissue engineering using 3D printing", Mater. Today 16 (2013) 496. 
  10. M. McGregor, S. Patel, S. McLachlin and M. Vlasea, "Architectural bone parameters and the relationship to titanium lattice design for powder bed fusion additive manufacturing", Addit. Manuf. 47 (2021) 102273. 
  11. F. Distefano, R. Mineo and G. Epasto, "Mechanical behaviour of a novel biomimetic lattice structure for bone scaffold", J. Mech. Behav. Biomed. Mater. 138 (2023) 105656. 
  12. D. Mahmoud and M.A. Elbestawi, "Selective laser melting of porosity graded lattice structures for bone implants", Int. J. Adv. Manuf. Technol. 100 (2019) 2915.