Acknowledgement
This research was supported by core technology development project for reorganization of new industries through the Korea Institute for Advancement of Technology (KIAT) funded by the Ministry of Trade, Industry and Energy (MOTIE) (grant number: P0018663).
References
- S. N. Histed, M. L. Lindenberg, E. Mena, B. Turkbey, P. L. Choyke, K. A. Kurdziel, "Review of Functional/anatomic Imaging in Oncology," Nucl. Med. Commun., Vol. 33, No. 4, pp. 349-361, 2012. https://doi.org/10.1097/MNM.0b013e32834ec8a5
- K. Wechalekar, B. Sharma, G. Cook, "PET/CT in Oncology-a Major Advance," Clin. Radiol., Vol. 60, No. 11, pp. 1143-1155, 2005. https://doi.org/10.1016/j.crad.2005.05.018
- B. J. Krause, M. Souvatzoglou, U. Treiber, "Imaging of Prostate Cancer with PET/CT and Radioactively Labeled Choline Derivates," Urol. Oncol-Semin. Ori., Vol. 31, No. 4, pp. 427-435, 2013. https://doi.org/10.1016/j.urolonc.2010.08.008
- N. Avril, M. Menzel, J. Dose, M. Schelling, W. Weber, F. Janicke, W. Nathrath, M. Schwaiger, "Glucose Metabolism of Breast Cancer Assessed by 18F-FDG PET: Histologic and Immunohistochemical Tissue Analysis," J. Nucl. Med., Vol. 42, No. 1, pp. 9-16, 2001.
- S. Rege, A. Maass, L. Chaiken, C. K. Hoh, Y. Choi, R. Lufkin, Y. Anzai, G. Juillard, J. Maddahi, M. E. Phelps, "Use of Positron Emission Tomography with Fluorodeoxyglucose in Patients with Extracranial Head and Neck Cancers," Cancer, Vol. 73, No. 12, pp. 3047-3058, 1994. https://doi.org/10.1002/1097-0142(19940615)73:12<3047::AID-CNCR2820731225>3.0.CO;2-#
- J. W. Braams, J. Pruim, N. J. Freling, P. G. Nikkels, J. L. Roodenburg, G. Boering, W. Vaalburg, A. Vermey, "Detection of Lymph Node Metastases of Squamous-cell Cancer of the Head and Neck with FDG-PET and MRI," J. Nucl. Med., Vol. 36, No. 2, pp. 211-216, 1995.
- W. Halfpenny, S. F. Hain, L. Biassoni, M. N. Maisey, J. A. Sherman, M. McGurk, "FDG-PET. A Possible Prognostic Factor in Head and Neck Cancer," Brit. J. Cancer., Vol. 86, No. 4, pp. 512-516, 2002. https://doi.org/10.1038/sj.bjc.6600114
- J. A. Bonner, P. M. Harari, J. Giralt, R. B. Cohen, C. U. Jones, R. K. Sur, D. Raben, J. Baselga, S. A. Spencer, J. Zhu, H. Youssoufian, E. K. Rowinsky, K. K. Ang, "Radiotherapy Plus Cetuximab for Locoregionally Advanced Head and Neck Cancer: 5-year Survival Data from a Phase 3 Randomised Trial, and Relation Between Cetuximab-induced Rash and Survival," Lancet. Oncol., Vol. 11, No. 1, pp. 21-28, 2010. https://doi.org/10.1016/S1470-2045(09)70311-0
- V. Kumar, Y. Gu, S. Basu, A. Berglund, S. A. Eschrich, M. B. Schabath, K. Forster, H. J. Aerts, A. Dekker, D. Fenstermacher, D. G. Goldgof, L. O. Hall, P. Lambin, Y. Balagurunathan, R. A. Gatenby, R. J. Gillies, "Radiomics: the Process and the Challenges," Magn. Reson. Imaging., Vol. 30, No. 9, pp. 1234-1248, 2012. https://doi.org/10.1016/j.mri.2012.06.010
- S. Gatidis, T. Hepp, M. Fruh, C. L. Fougere, K. Nikolaou, C. Pfannenberg, B. Scholkopf, T. Kustner, C. Cyran, D. Rubin, "A Whole-body FDG-PET/CT Dataset with Manually Annotated Tumor Lesions," Sci. Data., Vol. 9, No. 1, pp. 601, 2022.
- S. Yu, M. Chen, E. Zhang, J. Wu, H. Yu, Z. Yang, L. Ma, X. Gu, W. Lu, "Robustness Study of Noisy Annotation in Deep Learning Based Medical Image Segmentation," Phys. Med. Biol., Vol. 65, No. 17, pp. 175007, 2020.
- K. A. Philbrick, A. D. Weston, Z. Akkus, T. L. Kline, P. Korfiatis, T. Sakinis, P. Kostandy, A. Boonrod, A. Zeinoddini, N. Takahashi, B. J. Erickson, "RIL-contour: a Medical Imaging Dataset Annotation Tool for and with Deep Learning." J. Digit. Imaging, Vol. 32 pp. 571-581, 2019. https://doi.org/10.1007/s10278-019-00232-0
- V. Oreiller, V. Andrearczyk, M. Jreige, S. Boughdad, H. Elhalawani, J. Castelli, M. Vallieres, S. Zhuf, J. Xie, Y. Peng, A. Iantsenh, M. Hatt, Y. Yuan, J. Ma, X. Yang, C. Rao, S. Pai, K. Ghimire, X. Feng, M. A. Naser, C. D. Fuller, F. Yousefirizi, A. Rahmim, H. Chen, L. Wang, J. O. Prior, A. Depeursinge, "Head and Neck Tumor Segmentation in PET/CT: the HECKTOR Challenge," Med. image. anal., Vol. 77, pp. 102336, 2022.
- V. Andrearczyk, V. Oreiller, S. Boughdad, C. C. L. Rest, H. Elhalawani, M. Jreige, J. O. Prior, M. Valli'eres, D. Visvikis, M. Hatt, A. Depeursinge, "Overview of the HECKTOR Challenge at MICCAI 2021: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT Images," 3D Head and Neck Tumor Segmentation in PET/CT Challenge, pp. 1-37, 2021.
- J. Xie, Y. Peng, M. Wang, "The Squeeze & Excitation Normalization based nnU-Net for Segmenting Head & Neck Tumors," Chinese. J. Electron., Vol. 33, pp. 1-11, 2022.
- Y. Yuan, "Automatic Head and Neck Tumor Segmentation in PET/CT with Scale Attention Network," Head and Neck Tumor Segmentation: First Challenge, HECKTOR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings, pp.44-52, 2021.
- A. Iantsen, D. Visvikis, M. Hatt, "Squeeze-and-excitation Normalization for Automated Delineation of Head and Neck Primary Tumors in Combined PET and CT Images," Head and Neck Tumor Segmentation: First Challenge, HECKTOR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings, pp.37-43, 2021.
- B. Hariharan, P. Arbelaez, R. Girshick, J. Malik, "Hypercolumns for Object Segmentation and Fine-grained Localization," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 447-456, 2015.
- P. A. Yushkevich, Y. Gao, G. Gerig, "ITK-SNAP: An Interactive Tool for Semi-automatic Segmentation of Multi-modality Biomedical Images," 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3342-3345, 2016.
- H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, "Pyramid Scene Parsing Network," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881-2890, 2017.
- T. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, "Feature Pyramid Networks for Object Detection," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117-2125, 2017.
- J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, Y. Zhou, "Transunet: Transformers Make Strong Encoders for Medical Image Segmentation," arXiv preprint arXiv:2102.04306, 2021.
- H. Lee, H. Shin, G. S. Choi, S. Jin, "Performance Analysis of Deep Learning-based Image Super Resolution Methods," IEMEK J. Embed. Sys. Appl., Vol. 15, No. 2, pp. 61-70, 2020.