References
- Abdullah, A.A. (1984). "Basic strength properties of lightweight concrete using agricultural wastes as aggregates", Proceedings of international conference on low-cost housing for developing countries, Roorkee, India.
- Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A.A., Al-qaness, M.A.A. and Gandomi, A.H. (2021), "Aquila optimizer: A novel meta-heuristic optimization algorithm: Comput. Ind. Eng., 157, 107250. https://doi.org/10.1016/j.cie.2021.107250.
- Aghayari Hir, M., Zaheri, M. and Rahimzadeh, N. (2022), "Prediction of rural travel demand by spatial regression and artificial neural network methods (Tabriz County)", J. Transport. Res.,
- Ahmad Zawawi, M.N.A., Muthusamy, K., P.P. Abdul Majeed, A., Muazu Musa, R. and Mokhtar Albshir Budiea, A. (2020), "Mechanical properties of oil palm waste lightweight aggregate concrete with fly ash as fine aggregate replacement", J. Build. Eng., 27, 100924. https://doi.org/10.1016/j.jobe.2019.100924.
- Ahmad, S.W., Muthusamy, K., Hashim, M.H., Budiea, A.M.A., and Ariffin, N.F. (2020). "Effect of unground palm oil fuel ash as partial sand replacement on compressive strength of oil palm shell lightweight concrete." IOP Conference Series: Materials Science and Engineering, IOP Publishing, 12034.
- Al-Mughanam, T., Aldhyani, T.H.H., Alsubari, B. and Al-Yaari, M. (2020), "Modeling of compressive strength of sustainable self-compacting concrete incorporating treated palm oil fuel ash using artificial neural network: Sustainability, 12(22), 9322, https://doi.org/10.3390/su12229322.
- Alengaram, U.J., Al Muhit, B.A. and bin Jumaat, M.Z. (2013), "Utilization of oil palm kernel shell as lightweight aggregate in concrete-A review", Construct. Build. Mater., 38, 161-172. https://doi.org/10.1016/j.conbuildmat.2012.08.026.
- Alengaram, U.J., Mahmud, H. and Jumaat, M.Z. (2011), "Enhancement and prediction of modulus of elasticity of palm kernel shell concrete", Mater. Des., 32(4), 2143-2148, https://doi.org/10.1016/j.matdes.2010.11.035.
- AlRassas, A.M., Al-qaness, M.A.A., Ewees, A.A., Ren, S., Abd Elaziz, M., Damasevicius, R. and Krilavicius, T. (2021), "Optimized ANFIS model using aquila optimizer for oil production forecasting", Processes, 9(7), 1194, https://doi.org/10.3390/pr9071194.
- Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Procedia Struct. Integrity, 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122.
- Archer, K.J. and Kimes, R.V (2008), "Empirical characterization of random forest variable importance measures", Comput. Statistic. Data Anal., 52(4), 2249-2260. https://doi.org/10.1016/j.csda.2007.08.015
- Balogun, A.-L., Rezaie, F., Pham, Q.B., Gigovic, L., Drobnjak, S., Aina, Y.A., Panahi, M., Yekeen, S.T. and Lee, S. (2021), "Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms", Geosci. Front., 12(3), 101104, https://doi.org/10.1016/j.gsf.2020.10.009.
- Bayrami, B. (2022), "Estimation of splitting tensile strength of modified recycled aggregate concrete using hybrid algorithms", Available at SSRN 3992623.
- Benemaran, R.S. and Esmaeili-Falak, M. (2023), "Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review", Geomech. Eng., 34(5), 507-527. https://doi.org/10.12989/gae.2023.34.5.507.
- Bezdek, J.C., Ehrlich, R. and Full, W. (1984), "FCM: The fuzzy c-means clustering algorithm", Comput. Geosci., 10(2-3), 191-203. https://doi.org/10.1016/0098-3004(84)90020-7.
- Breiman, L. (2001), "Random forests", Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
- Bui, X.-N., Muazu, M.A., and Nguyen, H. (2020a), "Optimizing Levenberg-Marquardt backpropagation technique in predicting factor of safety of slopes after two-dimensional OptumG2 analysis", Eng. Comput., 36(3), 941-952. https://doi.org/10.1007/s00366-019-00741-0.
- Bui, X.-N., Nguyen, H., Le, H.-A., Bui, H.-B. and Do, N.-H. (2020b), "Prediction of blast-induced air over-pressure in open-pit mine: Assessment of different artificial intelligence techniques", Nat. Resources Res., 29(2), 571-591. https://doi.org/10.1007/s11053-019-09461-0.
- Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y. and Cho, H. (2015), "Xgboost: extreme gradient boosting", R Package Version 0.4-2, 1(4), 1-4.
- Chen, W., Wang, Y., Cao, G., Chen, G. and Gu, Q. (2014), "A random forest model based classification scheme for neonatal amplitude-integrated EEG", Biomedic. Eng., 13(2), 1-13. https://doi.org/10.1186/1475-925X-13-S2-S4
- Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018.
- Dawei, Y., Bing, Z., Bingbing, G., Xibo, G. and Razzaghzadeh, B. (2023), "Predicting the CPT-based pile set-up parameters using HHO-RF and PSO-RF hybrid models", Struct. Eng. Mech., 86(5), 673-686. https://doi.org/10.12989/SEM.2023.86.5.673
- Duan, J., Asteris, P.G., Nguyen, H., Bui, X.-N. and Moayedi, H. (2021), "A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model", Eng. Comput., 37(4), 3329-3346. https://doi.org/10.1007/s00366-020-01003-0.
- Esmaeili-Falak, M., and Benemaran, R.S. (2023), "Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles", Geomech. Eng., 32(6), 583-600. https://doi.org/10.12989/GAE.2023.32.6.583
- Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Regions Eng., 33(3), 4019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
- Farrar, D.E. and Glauber, R.R. (1967), "Multicollinearity in regression analysis: the problem revisited", Rev. Economic Statistics, 92-107. https://doi.org/10.2307/1937887.
- Friedman, J.H. (2002), "Stochastic gradient boosting", Comput. Statistics Data Anal., 38(4), 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2.
- Gao, W., Luis Garcia Guirao, J., Abdel-Aty, M. and Xi, W. (2019), "An independent set degree condition for fractional critical deleted graphs", Discrete Continuous Dyn. Syst. - S, 12(4-5), 877-886. https://doi.org/10.3934/dcdss.2019058.
- Ge, D.-M., Zhao, L.-C. and Esmaeili-Falak, M. (2022), "Estimation of rapid chloride permeability of SCC using hyperparameters optimized random forest models", J. Sustain. Cement-Based Mater.,
- Ghordoyee Milan, S., Roozbahani, A., Arya Azar, N. and Javadi, S. (2021), "Development of adaptive neuro fuzzy inference system-Evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation", J. Hydrology, 598, 126258. https://doi.org/10.1016/j.jhydrol.2021.126258.
- Gigović, L., Pourghasemi, H.R., Drobnjak, S. and Bai, S. (2019) "Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia's Tara National Park", Forests, 10(5), 408.
- Gokceoglu, C., Yesilnacar, E., Sonmez, H. and Kayabasi, A. (2004), "A neuro-fuzzy model for modulus of deformation of jointed rock masses", Comput. Geotech., 31(5), 375-383. https://doi.org/10.1016/j.compgeo.2004.05.001.
- Hoang, N.-D., Chen, C.-T. and Liao, K.-W. (2017), "Prediction of chloride diffusion in cement mortar using Multi-Gene Genetic Programming and Multivariate Adaptive Regression Splines", Measurement, 112, 141-149. https://doi.org/10.1016/j.measurement.2017.08.031.
- Hong, H., Pourghasemi, H.R. and Pourtaghi, Z.S. (2016), "Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models", Geomorphology, 259, 105-118. https://doi.org/10.1016/j.geomorph.2016.02.012
- Iphar, M., Yavuz, M, and Ak, H. (2008), "Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system", Environ. Geology, 56(1), 97107. https://doi.org/10.1007/s00254-007-1143-6.
- Jamellodin, Z., Sim, L.P., Qing, H.C., Adnan, S.H., Salleh, N. and Hamid, N.A.A. (2021), "Strength Performance of Oil Palm Shell Lightweight Aggregate Concrete", IOP Conference Series: Materials Science and Engineering, IOP Publishing, 12042.
- Jang, J.-S.R. (1993), "ANFIS: Adaptive-network-based fuzzy inference system", IEEE Transact. Syst. Man Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541.
- Jang, J.-S.R., Sun, C.-T. and Mizutani, E. (1997), "Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]", IEEE Transact. Automatic Control, 42(10), 1482-1484. https://doi.org/10.1109/TAC.1997.633847
- Kabir, H. and Hooton, R.D. (2020), "Evaluating soundness of concrete containing shrinkage-compensating MgO admixtures", Construct. Build. Mater., 253, 119141.
- Kabir, H., Hooton, R.D. and Popoff, N.J. (2020), "Evaluation of cement soundness using the ASTM C151 autoclave expansion test", Cement Concrete Res., 136, 106159.
- Kardani, N., Bardhan, A., Gupta, S., Samui, P., Nazem, M., Zhang, Y. and Zhou, A. (2021), "Predicting permeability of tight carbonates using a hybrid machine learning approach of modified equilibrium optimizer and extreme learning machine: Acta Geotechnica, https://doi.org/10.1007/s11440-021-01257-y.
- Kardani, N., Zhou, A., Nazem, M. and Shen, S.-L. (2020), "Estimation of bearing capacity of piles in cohesionless soil using optimised machine learning approaches", Geotech. Geological Eng., 38(2), 2271-2291. https://doi.org/10.1007/s10706-019-01085-8.
- Krishnamurthy, M. and Vandanapu, S.N. (2019), "Micro-structural and interfacial transition zone investigation on oil palm shell lightweight concrete", Int. J. Microstruct. Mater. Properties, 14(5), 448-461. https://doi.org/10.1504/IJMMP.2019.102222
- Li, Z., Thomas, R.J. and Peethamparan, S. (2019), "Alkali-silica reactivity of alkali-activated concrete subjected to ASTM C 1293 and 1567 alkali-silica reactivity tests", Cement Concrete Res., 123, 105796.
- Li, Z., Thomas, R.J., Lazama, D. and Peethamparan, S. (2016), Alkali Silica Reaction (ASR) in Cement Free Alkali Aactivated Sustainable Concrete.
- Liaw, A. and Wiener, M. (2002), "Classification and regression by randomForest", R News, 2(3), 18-22.
- Liu, L., Moayedi, H., Rashid, A.S.A., Rahman, S.S.A. and Nguyen, H. (2020), "Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raft-pile foundation (ERP) system", Eng. Comput., 36(1), 421-433. https://doi.org/10.1007/s00366-019-00767-4
- Mannan, M. and Ganapathy, C. (2001), "Mix design for oil palm shell concrete", Cement Concrete Res., 31(9), 1323-1325. https://doi.org/10.1016/S0008-8846(01)00585-3.
- Mannan, M.A. and Ganapathy, C. (2002), "Engineering properties of concrete with oil palm shell as coarse aggregate", Construct. Build. Mater., 16(1), 29-34. https://doi.org/10.1016/S0950-0618(01)00030-7.
- Mannan, M.A. and Ganapathy, C. (2004), "Concrete from an agricultural waste-oil palm shell (OPS)", Build. Environ., 39(4), 441-448. https://doi.org/10.1016/j.buildenv.2003.10.007.
- Mansour, M.Y., Dicleli, M., Lee, J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Eng. Struct., 26(6), 781-799. https://doi.org/10.1016/j.engstruct.2004.01.011.
- Mehta, P.K. (1986). Concrete. Structure, properties and materials:
- Mo, K.H., Chin, T.S., Alengaram, U.J. and Jumaat, M.Z. (2016), "Material and structural properties of waste-oil palm shell concrete incorporating ground granulated blast-furnace slag reinforced with low-volume steel fibres", J. Cleaner Product., 133, 414-426. https://doi.org/10.1016/j.jclepro.2016.05.162.
- Moayedi, H., Moatamediyan, A., Nguyen, H., Bui, X.-N., Bui, D.T., and Rashid, A.S.A. (2020). Prediction of ultimate bearing capacity through various novel evolutionary and neural network models", Eng. Comput., 36(2), 671-687. https://doi.org/10.1007/s00366-019-00723-2.
- Mohammed, H.R.M., and Ismail, S. (2021), "Proposition of new computer artificial intelligence models for shear strength prediction of reinforced concrete beams", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01400-z.
- Moradi, G., Hassankhani, E. and Halabian, A.M. (2022), "Experimental and numerical analyses of buried box culverts in trenches using geofoam", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 175(3), 311-322. https://doi.org/10.1680/jgeen.19.00288
- Muthusamy, K., Budiea, A.M.A., Azhar, N.W., Jaafar, M.S., Mohsin, S.M.S., Arifin, N.F. and Mat Yahaya, F. (2021a), "Durability properties of oil palm shell lightweight aggregate concrete containing fly ash as partial cement replacement", Mater. Today: Proceedings, 41, 56-60. https://doi.org/10.1016/j.matpr.2020.10.1003.
- Muthusamy, K., Hafizuddin Rasid, M., Nabilah Isa, N., Hanis Hamdan, N., Atikah Shafika Jamil, N., Mokhtar Albshir Budiea, A. and Wan Ahmad, S. (2021b), "Mechanical properties and acid resistance of oil palm shell lightweight aggregate concrete containing coal bottom ash", Mater. Today: Proceedings, 41, 47-50. https://doi.org/10.1016/j.matpr.2020.10.1001.
- Muthusamy, K., Jaafar, M.S., Azhar, N.W., Zamri, N., Samsuddin, N., Budiea, A.M.A. and Jaafar, M.F.M. (2020), "Properties of oil palm shell lightweight aggregate concrete containing fly ash as partial cement replacement", IOP Conference Series: Materials Science and Engineering, IOP Publishing, 12048.
- Nayak, P., Sudheer, K.., Rangan, D. and Ramasastri, K. (2004), "A neuro-fuzzy computing technique for modeling hydrological time series", J. Hydrology, 291(1-2), 52-66. https://doi.org/10.1016/j.jhydrol.2003.12.010.
- Nguyen, H. (2019), "Support vector regression approach with different kernel functions for predicting blast-induced ground vibration: a case study in an open-pit coal mine of Vietnam: SN", Appl. Sci., 1(4), 283. https://doi.org/10.1007/s42452-019-0295-9.
- Nguyen, H., Moayedi, H., Foong, L.K., Al Najjar, H.A.H., Jusoh, W.A.W., Rashid, A.S.A. and Jamali, J. (2020), "Optimizing ANN models with PSO for predicting short building seismic response", Eng. Comput., 36(3), 823-837. https://doi.org/10.1007/s00366-019-00733-0.
- Nguyen, H.D., Dao, N.D. and Shin, M. (2021), "Prediction of seismic drift responses of planar steel moment frames using artificial neural network and extreme gradient boosting", Eng. Struct., 242, 112518. https://doi.org/10.1016/j.engstruct.2021.112518.
- Nhu, V.-H., Hoang, N.-D., Duong, V.-B., Vu, H.-D. and Bui, D.T. (2020), "A hybrid computational intelligence approach for predicting soil shear strength for urban housing construction: a case study at Vinhomes Imperia project, Hai Phong city (Vietnam)", Eng. Comput., 36(2), 603-616. https://doi.org/10.1007/s00366-019-00718-z
- Pal, M. (2005), "Random forest classifier for remote sensing classification", Int. J. Remote Sensing, 26(1), 217-222. https://doi.org/10.1080/01431160412331269698
- Qi, C., Chen, Q., Fourie, A. and Zhang, Q. (2018), "An intelligent modelling framework for mechanical properties of cemented paste backfill", Minerals Eng., 123, 16-27. https://doi.org/10.1016/j.mineng.2018.04.010
- Rahman, F.F., Prakoso, W.A., Tjahjono, E., Sentosa, B.O.B. and Orientilize, M. (2020a), "Load-displacement response of oil palm shell concrete compressive test using digital image correlation", IOP Conference Series: Earth and Environmental Science, IOP Publishing, 12037.
- Rahman, N.A., Tan, A.S.H., Waqbitu, F. and Roslan, N.H. (2020b), "The effectiveness of oil palm shell (OPS) as major aggregate replacement in concrete", IOP Conference Series: Earth and Environmental Science, IOP Publishing, 12019.
- Santos, S., da Silva, P.R. and de Brito, J. (2019), "Self-compacting concrete with recycled aggregates - A literature review", J. Build. Eng., 22, 349-371. https://doi.org/10.1016/j.jobe.2019.01.001.
- Sarkhani Benemaran, R. (2023), "Application of extreme gradient boosting method for evaluating the properties of episodic failure of borehole breakout", Geoenergy Sci. Eng., 211837. https://doi.org/10.1016/j.geoen.2023.211837.
- Sarkhani Benemaran, R., Esmaeili-Falak, M. and Javadi, A. (2022a), "Predicting resilient modulus of flexible pavement foundation using extreme gradient boosting based optimised models", Int. J. Pavement Eng., 1-20. https://doi.org/10.1080/10298436.2022.2095385.
- Sezer, E.A., Nefeslioglu, H.A. and Gokceoglu, C. (2014), "An assessment on producing synthetic samples by fuzzy C-means for limited number of data in prediction models", Appl. Soft Comput., 24, 126-134. https://doi.org/10.1016/j.asoc.2014.06.056.
- Shafigh, P., Jumaat, M.Z. and Mahmud, H. (2010), "Mix design and mechanical properties of oil palm shell lightweight aggregate concrete: a review", Int. J. Phys. Sci., 5(14), 2127-2134.
- Shafigh, P., Jumaat, M.Z. and Mahmud, H. (2011a), "Oil palm shell as a lightweight aggregate for production high strength lightweight concrete", Construct. Build. Mater., 25(4), 1848-1853. https://doi.org/10.1016/j.conbuildmat.2010.11.075.
- Shafigh, P., Jumaat, M.Z., Mahmud, H. Bin and Alengaram, U.J. (2011b), "A new method of producing high strength oil palm shell lightweight concrete", Mater. Des., 32(10), 4839-4843. https://doi.org/10.1016/j.matdes.2011.06.015.
- Shakir, A.A., Wan Ibrahim, M.H., Othman, N.H. and Shahidan, S. (2019), "The effect of palm oil clinker and oil palm shell on the compressive strength of concrete", Iran. J. Sci. Technol., Transact. Civil Eng., 43(S1), 1-14. https://doi.org/10.1007/s40996-018-0176-2.
- Shariza, M.A., Philip, D.C. and Maszura, S.M.S. (2019), "Preliminary study on properties of oil palm shell lightweight concrete with cockle shell as mixing ingredient", IOP Conference Series: Materials Science and Engineering, IOP Publishing, 12016.
- Shi, X., Yu, X. and Esmaeili-Falak, M. (2023), "Improved arithmetic optimization algorithm and its application to carbon fiber reinforced polymer-steel bond strength estimation", Compos. Struct., 306, 116599. https://doi.org/10.1016/j.compstruct.2022.116599.
- Shozib, I.A., Ahmad, A., Rahaman, M.S.A., majdi Abdul-Rani, A., Alam, M.A., Beheshti, M. and Taufiqurrahman, I. (2021), "Modelling and optimization of microhardness of electroless Ni-P-TiO2 composite coating based on machine learning approaches and RSM", J. Mater. Res. Technol., 12, 1010-1025. https://doi.org/10.1016/j.jmrt.2021.03.063
- Stumpf, A. and Kerle, N. (2011), "Object-oriented mapping of landslides using Random Forests", Remote Sensing Environ., 115,(10), 2564-2577. https://doi.org/10.1016/j.rse.2011.05.013
- Taherdangkoo, M. and Bagheri, M.H. (2013), "A powerful hybrid clustering method based on modified stem cells and Fuzzy C-means algorithms", Eng. Appl. Artificial Intell., 26(5-6), 1493-1502. https://doi.org/10.1016/j.engappai.2013.03.002.
- Teles, G., Rodrigues, J.J.P.C., Rabelo, R.A.L. and Kozlov, S.A. (2021), "Comparative study of support vector machines and random forests machine learning algorithms on credit operation", Softw. Practice Experience, 51(12), 2492-2500. https://doi.org/10.1002/spe.2842
- Teo, D.C.L., Mannan, M.A. and Kurian, J.V (2006), "Flexural behaviour of reinforced lightweight concrete beams made with Oil Palm Shell (OPS)", J. Adv. Concrete Technol., 4(3), 459-468, https://doi.org/10.3151/jact.4.459.
- Teo, D.C.L., Mannan, M.A., Kurian, V.J. and Ganapathy, C. (2007), "Lightweight concrete made from oil palm shell (OPS): Structural bond and durability properties", Build. Environ., 42(7), 2614-2621. https://doi.org/10.1016/j.buildenv.2006.06.013.
- Tien Bui, D., Tuan, T.A., Klempe, H., Pradhan, B. and Revhaug, I. (2016), "Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree", Landslides, 13(2), 361-378. https://doi.org/10.1007/s10346-015-0557-6.
- Ting, T.Z.H., Rahman, M.E. and Lau, H.H. (2019), "Lightweight Self-compacting Concrete Incorporating Oil Palm Shell", IOP Conference Series: Materials Science and Engineering, IOP Publishing, 12096.
- Ting, T.Z.H., Rahman, M.E. and Lau, H.H. (2020), "Sustainable lightweight self-compacting concrete using oil palm shell and fly ash", Construct. Build. Mater., 264, 120590, https://doi.org/10.1016/j.conbuildmat.2020.120590.
- Trigila, A., Iadanza, C., Esposito, C. and Scarascia-Mugnozza, G. (2015), "Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy)", Geomorphology, 249, 119-136. https://doi.org/10.1016/j.geomorph.2015.06.001
- Uchechukwu, E.A. and Austin, O. (2020), "Artificial neural network application to the compressive strength of palm kernel shell concrete", MOJ Civil Eng, 6(1), 1-10. https://doi.org/10.15406/mojce.2020.06.00164
- Wang, B., Moayedi, H., Nguyen, H., Foong, L.K. and Rashid, A.S.A. (2020a), "Feasibility of a novel predictive technique based on artificial neural network optimized with particle swarm optimization estimating pullout bearing capacity of helical piles", Eng. Comput., 36(4), 1315-1324. https://doi.org/10.1007/s00366-019-00764-7.
- Wang, J., Fa, Y., Tian, Y. and Yu, X. (2021a), "A machine-learning approach to predict creep properties of Cr-Mo steel with time-temperature parameters", J. Mater. Res. Technol., 13, 635-650. https://doi.org/10.1016/j.jmrt.2021.04.079
- Wang, L., Wu, C., Tang, L., Zhang, W., Lacasse, S., Liu, H. and Gao, L. (2020b), "Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method", Acta Geotechnica, 15(11), 3135-3150. https://doi.org/10.1007/s11440-020-00962-4.
- Wang, S., Jia, H., Liu, Q. and Zheng, R. (2021b), "An improved hybrid Aquila Optimizer and Harris Hawks Optimization for global optimization", Mathem. Biosci. Eng., 18(6), 7076-7109. https://doi.org/10.3934/mbe.2021352.
- Yilmaz, I. and Yuksek, G. (2009), "Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models", Int. J. Rock Mech. Mining Sci., 46(4), 803-810. https://doi.org/10.1016/j.ijrmms.2008.09.002.
- Yusoff, S. (2006), "Renewable energy from palm oil - innovation on effective utilization of waste", J. Cleaner Product., 14(1), 87-93. https://doi.org/10.1016/j.jclepro.2004.07.005.
- Zhang, J., Li, D., and Wang, Y. (2020), "Predicting uniaxial compressive strength of oil palm shell concrete using a hybrid artificial intelligence model", J. Buil. Eng., 30, 101282. https://doi.org/10.1016/j.jobe.2020.101282.
- Zhou, J., Li, E., Wang, M., Chen, X., Shi, X. and Jiang, L. (2019a), "Feasibility of stochastic gradient boosting approach for evaluating seismic liquefaction potential based on SPT and CPT case histories", J. Perform. Construct. Facilities, 33(3), 4019024. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001292.
- Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S. and Mitri, H.S. (2019b), "Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories", Safety Sci., 118, 505-518. https://doi.org/10.1016/j.ssci.2019.05.046.
- Zhou, J., Qiu, Y., Armaghani, D.J., Zhang, W., Li, C., Zhu, S. and Tarinejad, R. (2021), "Predicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniques", Geosci. Front., 12(3), 101091. https://doi.org/10.1016/j.gsf.2020.09.020.