DOI QR코드

DOI QR Code

Free vibration analysis of FGM plates using an optimization methodology combining artificial neural networks and third order shear deformation theory

  • Mohamed Janane Allah (Hassan II University of Casablanca, National Higher School of Arts and Crafts of Casablanca, AICSE Laboratory) ;
  • Saad Hassouna (Hassan II University of Casablanca, National Higher School of Arts and Crafts of Casablanca, AICSE Laboratory) ;
  • Rachid Aitbelale (University of Chouaib Doukkali, Faculty of sciences, Laboratory of Catalysis and Corrosion of Materials) ;
  • Abdelaziz Timesli (Hassan II University of Casablanca, National Higher School of Arts and Crafts of Casablanca, AICSE Laboratory)
  • 투고 : 2023.10.27
  • 심사 : 2023.12.05
  • 발행 : 2023.12.25

초록

In this study, the natural frequencies of Functional Graded Materials (FGM) plates are predicted using Artificial Neural Network (ANN). A model based on Third-order Shear Deformation Theory (TSDT) and FEM is used to train the ANN model. Different training methods are tested to simulate input and output dependency. As this is a parametric model, several architectures and optimization algorithms were tested. The proposed model allows us to minimize the CPU time to evaluate candidate material properties for FGM plate material selection and demonstrate their influence on dynamic behavior. Consequently, the time required for the FGM design process (candidate materials for material selection) and the geometric optimization of the FGM structure would remain reasonable. The ANN model can help industries to produce FGM plates with good mechanical properties of the selected materials. I addition, this model can be used to directly predict vibration behavior by testing a large number of FGM plates, representing all possible combinations of metals and ceramics in today's industry, without having to solve any eigenvalue problems.

키워드

참고문헌

  1. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213
  2. Cheng, X., Al-Khafaji, S.H., Hashemian, M., Ahmed, M., Eftekhari, S.A., Alanssari, A.I., Diaa, N.M., Karim, M.M., Toghraie, D. and Alawadi, A.H. (2023), "Statistical analysis and Neural Network Modeling of functionally graded porous nanobeams vibration in an elastic medium by considering the surface effects", Eng. Appl. Artif. Intell., 123, 106313, https://doi.org/10.1016/j.engappai.2023.106313
  3. Coomar, N. and Kadoli, R. (2010), "Comparative analysis of steady state heat transfer in a TBC and functionally graded air cooled gas turbine blade", Sadhana, 35, 1-17. https://doi.org/10.1007/s12046-010-0006-0
  4. Do, D.T., Lee, D. and Lee, J. (2019), "Material optimization of functionally graded plates using deep neural network and modified symbiotic organisms search for eigenvalue problems", Compos. B: Eng., 159, 300-326, https://doi.org/10.1016/j.compositesb.2018.09.087
  5. Do, D.T., Nguyen-Xuan, H. and Lee, J. (2020), "Material optimization of tri-directional functionally graded plates by using deep neural network and isogeometric multimesh design approach", Appl. Math. Model., 87, 501-533, https://doi.org/10.1016/j.apm.2020.06.002
  6. Ghamkhar, M., Khadimallah, M.A., Iqbal, M.Z., Hussain, M., Yahya, A., Khedher, K.M., Naeem, M.N., Tounsi, A. (2021), "Performance of FGM bilayered cylindrical shell placed on cantilever edge", Adv. Nano Res., 11(4), 339-345, https://doi.org/10.12989/anr.2021.11.4.339
  7. Hosseini-Hashemi, S., Taher, H.R.D., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34(5), 1276-1291, https://doi.org/10.1016/j.apm.2009.08.008
  8. Janane Allah M. and Timesli, A. (2023), "Nonlinear dynamic analysis of viscoelastic FGM with linear and nonlinear porosity distributions", Mater. Today Commun., 35, 106306, https://doi.org/10.1016/j.mtcomm.2023.106306
  9. Janane Allah, M., Belaasilia, Y., Timesli, A. and El haouzi, A. (2021), "TSDT theory for free vibration of functionally graded plates with various material properties", Math. Model. Comput., 8(4), 691-704. https://doi.org/10.23939/mmc2021.04.691
  10. Janane Allah, M., Timesli, A. and Belaasilia, Y. (2022), "Nonlinear dynamic analysis of porous functionally graded materials based on new third-order shear deformation theory", Steel Compos. Struct., 43(1), 1-17. https://doi.org/10.12989/scs.2022.43.1.001
  11. Jodaei, A., Jalal, M. and Yas, M.H. (2012), "Free vibration analysis of functionally graded annular plates by state-space based differential quadrature method and comparative modeling by ANN", Compos. B: Eng., 43(2), 340-353, https://doi.org/10.1016/j.compositesb.2011.08.052
  12. Karami, B. and Ghayesh, M.H. (2023), "Vibration characteristics of sandwich microshells with porous functionally graded face sheets", Int. J. Eng. Sci., 189, 103884. https://doi.org/10.1016/j.ijengsci.2023.103884
  13. Karami, B. and Janghorban, M. (2023), "Numerical study on the static bending and forced vibration of triclinic plate with arbitrary boundary conditions", Arch. Civ. Mech. Eng., 23(4), 228.
  14. Karami, B., Janghorban, M. and Fahham, H. (2022), "On the stress analysis of anisotropic curved panels", Int. J. Eng. Sci., 172, 103625. https://doi.org/10.1016/j.ijengsci.2022.103625
  15. Khabaz, M.K., Eftekhari, S.A. and Toghraie, D. (2022), "Vibration and dynamic analysis of a cantilever sandwich microbeam integrated with piezoelectric layers based on strain gradient theory and surface effects", Appl. Math. Comput., 419, 126867. https://doi.org/10.1016/j.amc.2021.126867.
  16. Khabaz, M.K., Eftekhari, S.A., Hashemian, M. and Toghraie, D. (2016), "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories", Phys. A: Stat. Mech., 546, 123998. https://doi.org/10.1016/j.physa.2019.123998.
  17. Khoshnoodi, H., Yas, M.H. and Samadinejad, A. (2016), "Dynamic analysis of multi-directional functionally graded panels and comparative modeling by ANN", J. Solid Mech., 8(3), 482-494. https://www.sid.ir/en/VEWSSID/J_pdf/134420160302.pdf.
  18. Liu, X., Tian, S., Tao, F. and Yu, W. (2021), "A review of artificial neural networks in the constitutive modeling of composite materials", Compos. B: Eng., 224, 109152. https://doi.org/10.1016/j.compositesb.2021.109152.
  19. Lu, J., Wang, D., Zhang, K., Li, S., Zhang, B., Zhang, X., Zhang, L., Wang, W., Li, Y. and He, R. (2022), "Mechanical properties of Al2O3 and Al2O3/Al with Gyroid structure obtained by stereolithographic additive manufacturing and melt infiltration", Ceramics Int., 48(16), 23051-23060. https://doi.org/10.1016/j.ceramint.2022.04.283.
  20. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437, https://doi.org/10.12989/sem.2019.69.4.427.
  21. Nick, H., Ashrafpoor, A. and Aziminejad, A. (2023), "Damage identification in steel frames using dual-criteria vibration-based damage detection method and artificial neural network", Structures, 51, 1833-1851. https://doi.org/10.1016/j.istruc.2023.03.152.
  22. Oveissi, S., Eftekhari, S.A. and Toghraie, D. (2016a), "Longitudinal vibration and instabilities of carbon nanotubes conveying fluid considering size effects of nanoflow and nanostructure", Physica E Low Dimens. Syst. Nanostruct., 83, 164-173. https://doi.org/10.1016/j.physe.2016.05.010.
  23. Oveissi, S., Toghraie, D. and Eftekhari, S.A. (2016b), "Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid", Physica E Low Dimens. Syst. Nanostruct., 83, 275-283. https://doi.org/10.1016/j.physe.2016.05.004.
  24. Oveissi, S., Toghraie, D.S. and Eftekhari, S.A. (2017), "Analysis of transverse vibrational response and instabilities of axially moving CNT conveying fluid", Int. J. Fluid Mech. Res., 44(2), 115-129. https://doi.org/10.1615/InterJFluidMechRes.2017016740.
  25. Pirmoradian, M., Torkan, E. and Toghraie, D. (2020), "Study on size-dependent vibration and stability of DWCNTs subjected to moving nanoparticles and embedded on two-parameter foundations", Mech. Mater., 142, 103279. https://doi.org/10.1016/j.mechmat.2019.103279.
  26. Rashidi, S. and Ziaei-Rad, S. (2017), "Experimental and numerical vibration analysis of wire rope isolators under quasi-static and dynamic loadings", Eng. Struct., 148, 328-339. https://doi.org/10.1016/j.engstruct.2017.06.061
  27. Reddy, J. (2000), "Analysis of functionally graded plates", Int. J. Numer. Methods Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  28. Shahsavari, D. and Karami, B. (2022), "Assessment of Reuss, Tamura, and LRVE models for vibration analysis of functionally graded nanoplates", Arch. Civ. Mech. Eng., 22(2), 92. https://doi.org/10.1007/s43452-022-00409-5.
  29. Shih, H.S., Shyur, H.J. and Lee, E.S. (2007), "An extension of TOPSIS for group decision making", Math. Comput. Model, 45(7-8), 801-813. https://doi.org/10.1016/j.mcm.2006.03.023.
  30. Sibtain, M., Yee, K., Ong, O.Z.S., Ghayesh, M.H. and Amabili, M. (2023), "Dynamics of size-dependent multilayered shear deformable microbeams with axially functionally graded core and non-uniform mass supported by an intermediate elastic support", Eng. Anal. Bound. Elem., 146, 263-283. https://doi.org/10.1016/j.enganabound.2022.10.030.
  31. Timesli, A. (2023), "Analytical modeling of buckling of carbon nanotubes reinforced sandwich-structured composite shells resting on elastic foundations", Gazi Univ. J. Sci., 36(4), 1700-1720. https://doi.org/10.35378/gujs.998265.
  32. Yee, K., Ong, O.Z.S., Ghayesh, M.H. and Amabili, M. (2024), "Various homogenisation schemes for vibration characteristics of axially FG core multilayered microbeams with metal foam face layers based on third order shear deformation theory", Appl. Math. Model., 125, 189-217. https://doi.org/10.1016/j.apm.2023.08.
  33. Zanakis, S.H., Solomon, A., Wishart, N. and Dublish, S. (1998), "Multi-attribute decision making: A simulation comparison of select methods", Eur. J. Oper. Res., 107(3), 507-529. https://doi.org/10.1016/S0377-2217(97)00147-1.
  34. Zhao, F., Du, R., Wang, J., Zhang, F. and Hong, B. (2023), "Geometrically nonlinear shape sensing of anisotropic composite beam structure using iFEM algorithm and third-order shear deformation theory", Compos. Struct., 322, 117364. https://doi.org/10.1016/j.compstruct.2023.117364.
  35. Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, Solid Mechanics, Butterworth-Heinemann