DOI QR코드

DOI QR Code

Damping characteristics of CFRP strengthened castellated beams

  • 투고 : 2021.06.21
  • 심사 : 2023.09.12
  • 발행 : 2023.12.25

초록

In recent years, Carbon Fibre Reinforced Plastic (CFRP) strengthening is found to be one of the best methods to strengthen steel structures. The fibrous bond can also influence the vibration characteristics of the strengthened element apart from its static strength enhancement property. The main objective of this study is to understand the influence of CFRP strengthening on the dynamic Behaviour of Thin-Webbed Castellated Beams (TWCBs). A detailed experimental investigation was carried out on five sets of beams with varying parameters such as domination of shear (Shear Dominant, Moment Dominant and Moment and Shear Dominant), sectional classification (Plastic and Semi-compact) and perforation geometries (ho/dwratio 0.65 and e/ho ratio 0.3). Free vibration analysis was carried out by exciting the simply supported TWCBs with an impact force generated by a ball dropped from a specific height. Logarithmic decrement method was used to obtain the damping ratio and natural frequencies of vibration were found by Fast Fourier Transform (FFT). Natural frequency showed an increase in a range of 10.5 - 55% for the different sets of castellated beams. An increase of 62.30% was noted in the damping ratio of TWCBs after strengthening which is an indication of improvement in the vibration characteristics of the beam.

키워드

과제정보

The authors gratefully acknowledge the financial support by the National Institute of Technology, Tiruchirappalli provided through the Technical Education Quality Improvement Program (TEQIP) Phase II Scheme. The authors thankfully acknowledge all the Managers and Technicians of FOSROC Chemicals (India) Pvt. Limited, Bangalore for offering the CFRP (Nitowrap CF200) and Epoxies (Nitowrap 30 and Nitowrap 410) for this study and for the preparation of this paper.

참고문헌

  1. Altaee, M.J., Cunningham, L.S. and Gillie, M., (2017), "Experimental investigation of CFRP-strengthened steel beams with web openings", Jl. Const. steel Res., 138, 750-760. https://doi.org/10.1016/j.jcsr.2017.08.023.
  2. ASTM A370-03a, (2003), Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, West Conshohocken, PA, U.S.A.
  3. Bakis, C.E., Bank, L.C., Brown, V.L., Cosenza, E., Davalos, J.F., Lesko, J.J., Machida, A., Rizkaalla, S.H. and Triantafillou, T.C., (2002), "Fibre-reinforced polymer composites for construction: State-of-the Art review", Jl. Comp. Const., 6(2), 73-87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73).
  4. Bambach, M.R., Jama, H.H., and Elchalakani, M., (2009), "Axial capacity and design of thin-walled steel SHS strengthened with CFRP", Jl. Thin- Wall. Struct., 47(10), 1112-112. https://doi.org/10.1016/j.tws.2008.10.006.
  5. BIS 2062 (2011), Hot Rolled Medium and High Tensile Structural Steel, Bureau of Indian Standards, New Delhi, India.
  6. BIS 800 (2007), General Construction in Steel-Code of Practice, Bureau of Indian Standards, New Delhi, India.
  7. Blodgett, O.W. (1976), Design of Welded Structures 7th Printing, The James F. Lincoln Arc Welding Foundation, Cleveland, OH, U.S.A.
  8. Boyer, J.P. (1964), "Castellated beam- New developments", Proceedings of the 16th National Engineering Conference, Omaha, NE. May.
  9. Brockenbrough. R.L. Schuster, J. (2018), Design Guide 15: Rehabilitation and Retrofit Guide: Historic Shapes and Specifications. American Institute for Steel Construction, Chicago, IL, USA.
  10. Cardoso, J.V., Gamboa, P.V. and Silva, A.P. (2019), "Effect of surface pre-treatment on the behaviour of adhesively bonded CFRP T-joints", Jl. Eng. Fail. Ana., 104, 1188-1202. https://doi.org/10.1016/j.engfailanal.2019.05.043.
  11. Cyril Thomas, A. and Baskar, K. (2021), "Behaviour of thin-walled castellated beams strengthened using CFRP", Structures, 30, 338-351. https://doi.org/10.1016/j.istruc.2020.12.083.
  12. Cyril Thomas, A. and Baskar, K. (2018), "Strengthening of thin-webbed castellated beams using CFRP", Int. Jl. Comp. Mtds. in Eng. Sci. Mech., 19(6), 396-404. https://doi.org/10.1080/15502287.2018.1534153.
  13. Cyril Thomas, A. and Baskar, K. (2018), "Testing and evaluation of bond surface profile influencing the CFRP strengthening of steel members", Jl. Test. Eval., 46(6), 2569-2583. https://doi.org/10.1520/JTE20170195.
  14. Cyril Thomas, A. and Baskar, K. (2019), "Assessment of load carrying capacity of thin-webbed castellated beam", Recent Adv. Struct. Eng., Vol.1. Lect. Notes in Civil Eng., 11, 339-350. https://doi.org/10.1007/978-981-13-0362-3_27.
  15. Ekin, E. and Sherif, E. (2008), "Restraining steel brace buckling using a carbon fibre-reinforced polymer composite system: Experiments and computational simulation", Jl. Comp. Const., 12(5), 562-569. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:5(562).
  16. Ellobody, E. (2011), "Interaction buckling modes of castellated beams", Jl. Const. Steel Res., 67, 814-825. https://doi.org/10.1016/j.jcsr.2010.12.012.
  17. Kabir, M.H., Fawzia, S., Chan, T.H.T., Tommy, Gamage, J.C.P.H. and Bai, J.B., (2016), "Experimental and numerical investigation of the behaviour of CFRP strengthened CHS beams subjected to bending", Eng. Struct., 113, 160-173. https://doi.org/10.1016/j.engstruct.2016.01.047.
  18. Kadhim, M.M.A., Wu, Z. and Cunningham, L.S. (2019), "Experimental and numerical investigation of CFRP-Strengthened steel beams under impact load", Jl. Struct. Eng., 04019004 - 1. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002288.
  19. Kerdal, D. and Nethercott, D.A. (1984), "Failure modes for castellated beams", Jl. Const. Steel Res., 4, 295-315. https://doi.org/10.1016/0143-974X(84)90004-X .
  20. Keykha, A.H. (2021), "CFRP strengthening of steel beam curved in plan", Steel and Comp. Struct. Intl. Jl., 41(5), 637-648, https://doi.org/10.12989/scs.2021.41.5.637.
  21. Keykha, A.H. (2018), "Numerical investigation of continuous hollow steel beam strengthened using CFRP", Struct. Eng. Mech., 66(4), 439-444. https://doi.org/10.12989/sem.2018.66.4.439.
  22. Lim, D. (2022), "Structural behavior of steel beams strengthened with CFRP strips and cables", Steel Comp. Struct., 41(5), 637-648, https://doi.org/10.12989/scs.2022.42.3.289.
  23. Linghoff, D., Haghani, D. and Al-Emrani, M. (2009), "Carbon-fibre composites for strengthening of steel structures", Jl. ThinWall. Struct., 47(10), 1048-1058. https://doi.org/10.1016/j.tws.2008.10.019.
  24. Narmashiri, K., Sulong, N.H.R. and Jumaat, M.Z., (2012), "Failure analysis and structural behaviour of CFRP strengthened steel I-beams", Jl. Const. Buil. Mat., 30, 1-9. https://doi.org/10.1016/j.conbuildmat.2011.11.009.
  25. Packham, D.E. (2003), "Surface energy, surface topography and adhesion", Intl. Jl. Adh. Adhes., 23(6), 437-448. https://doi.org/10.1016/S0143-7496(03)00068-X.
  26. Park, J. and Yoo, J. (2015), "Flexural and compression behavior for steel structures strengthened with Carbon Fiber Reinforced Polymers (CFRPs) sheet", Steel Comp. Struct., 19(2), 441-465. https://doi.org/10.12989/scs.2015.19.2.441.
  27. Patnaik A.K., Bauer, C.L. and Srivastan, T.S., (2008), "The extrinsic influence of carbon fibre reinforced plastic laminates to strengthen steel structures", Jl. Indian Acad. Sci. SADHANA, 33(3), 261-272. https://www.ias.ac.in/article/fulltext/sadh/033/03/0261-0272 . https://doi.org/10.1007/s12046-008-0019-0
  28. Pourbehi, P. and Pirmoz, A. (2015), "Shear response of castellated steel beams", Intl. Jl. Steel Struct., 15(2), 389-399. https://doi.org/10.1007/s13296-015-6010-9.
  29. Selvaraj, S. and Mahendra Kumar M. (2017), "CFRP strengthened steel beams: Improvement in failure modes and performance analysis", Structures, 12, 120-131. https://doi.org/10.1016/j.istruc.2017.08.008.
  30. Sivaganesh, S., Mahendrakumar, M. and Saurabh, U.D. (2016), "Experimental studies on strength and stiffness enhancement in CFRP strengthened structural steel channel sections under flexure", Jl. Comp. Const., 20(6), 04016042. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000700.
  31. Siwowski T.W. and Siwowska, P. (2018), "Experimental study on CFRP - strengthened steel beams", Jl. Comp. B: Eng., 149, 12-21. https://doi.org/10.1016/j.compositesb.2018.04.060.
  32. Soltani, M.R., Bouchair, A. and Mimoune, M. (2012), "Non-linear FE analysis of the ultimate behavior of steel castellated beams", Jl. Const. Steel Res., 70, 101-114. https://doi.org/10.1016/j.jcsr.2011.10.016.
  33. Sorrentino, L., Polini, W., Bellini, C. and Parodo, G., (2018), "Surface treatment of CFRP: influence on single lap joint performances", Intl. Jl. Adh. Adhes., 85, 225-233. https://doi.org/10.1016/j.compositesa.2020.105897.
  34. SSPC-SP 10 / NACE No. 2 (2000), Near White Blast Cleaning, Joint surface preparation method. NACE International (The National Association of Corrosion Engineers International), TX, USA and SSPC (The Society for Protective Coatings), PA, USA.
  35. SSPC-SP 5/NACE No. 1 (1994), White Metal Blast Cleaning, Joint surface preparation method. NACE International (The National Association of Corrosion Engineers International), TX, USA and SSPC (The Society for Protective Coatings), PA, USA.
  36. SSPC-SP 6 / NACE No. 3 (2000), Commercial Blast Cleaning, Joint surface preparation method. NACE International (The National Association of Corrosion Engineers International), TX, USA and SSPC (The Society for Protective Coatings), PA, USA.
  37. Subramanian N. (2008), Design of Steel Structures - Design and Practice, Oxford University Press, New Delhi, India.
  38. Tayeb, B., Daouadji, T.H., Abderezak, R. and Tounsi, A., (2021), "Structural bonding for civil engineering structures: New model of composite I-steel-concrete beam strengthened with CFRP plate", Steel Comp. Struct., 41(3), 417-435, https://doi.org/10.12989/scs.2021.41.3.417.
  39. Teng, J.G., Yu, T. and Fernando, D., (2012), "Strengthening of steel structures with fibre-reinforced polymer composites", Jl. Const. Steel Res., 78, 131-143. https://doi.org/10.1016/j.jcsr.2012.06.011.
  40. Yousefi, O., Narmashiri, K. and Ghaemdoust, M.R. (2017), "Structural behaviors of notched steel beams strengthened using CFRP strips", Steel Comp. Struct., 25(1), 35-43, https://doi.org/10.12989/scs.2017.25.1.035.
  41. Zaarour, W. and Redwood, R. (1996), "Web buckling in thin-webbed castellated beams", Jl. Struct. Eng., 122, 860-866. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:8(860).
  42. Zhao, X.L. and Zhang, L. (2007), "State-of-the- Art Review on FRP Strengthened Steel Structures", Jl. Eng. Struct. 29(8), 1808-1823. https://doi.org/10.1016/j.engstruct.2006.10.006.