DOI QR코드

DOI QR Code

Dependence of Electrical and Optical Properties on Substrate Temperatures of AZO Thin Films

기판온도에 의한 AZO 박막의 전기적 및 광학적 특성 변화

  • 강성준 (전남대학교 전기및반도체공학전공) ;
  • 정양희 (전남대학교 전기및반도체공학전공)
  • Received : 2023.10.17
  • Accepted : 2023.12.27
  • Published : 2023.12.31

Abstract

We prepared AZO (Al2O3 : 3 wt %) thin films according to the substrate temperature using the pulsed laser deposition method and the structural, electrical, and optical properties of the thin films were investigated. The AZO thin film deposited at 400℃ showed the best (002) orientation and the FWHM was 0.38°. As a result of the investigation of electrical properties, it was confirmed that the carrier concentration and mobility increased and the resistivity decreased as the substrate temperature increased. The average transmittance in the visible light region showed a high value of 85% or more regardless of the substrate temperature. The Burstein-Moss effect, in which the carrier concentration would increase with increasing substrate temperature thereby widening the energy band gap, was also observed. The resistivity and the figure of merit of the AZO thin film deposited at a substrate temperature of 400℃ were 6.77 × 10-4 Ω·cm and 1.02 × 104-1·cm-1 respectively, showing the best value.

본 연구에서는 본 연구에서는 펄스 레이저 증착법으로 기판온도에 따른 AZO(Al2O3 : 3 wt %)박막을 제작하여, 구조적 특성과 전기적 및 광학적 특성을 조사하였다. 기판온도 400℃ 에서 증착한 AZO박막에서 가장 우수한 (002) 배향성을 나타내었으며, 이때의 반가폭은 0.42° 였다. 전기적 특성을 조사한 결과, 기판온도가 상승함에 따라 캐리어 농도와 이동도는 증가하였고 비저항은 감소하였다. 가시광 영역에서의 평균 투과도는 기판온도에 상관없이 85% 이상의 높은 값을 나타내었고, 기판온도에 상승함에 따라 캐리어 농도가 증가하고 이로 인해 에너지 밴드갭이 넓어지는 Burstein-Moss효과도 관찰할 수 있었다. 기판온도 400℃ 에서 증착한 AZO박막의 비저항과 재료평가지수는 각각 6.77 × 10-4 Ω·cm 과 1.02 × 104-1·cm-1 로 가장 우수한 값을 나타내었다.

Keywords

References

  1. D. Kang, S. Kuk, K. Ji, H. Lee, and M. Han, "Effects of ITO precursor thickness on transparent conductive Al doped ZnO film for solar cell applications," Sol. Energy Mater. Sol. Cells, vol. 95, issue 1, Jan. 2011, pp. 138-141. https://doi.org/10.1016/j.solmat.2010.04.068
  2. W. Liu, S. Wu, C. Tseng, and C. Hung, "Quality improvement of high-performance transparent conductive Ti-doped GaZnO thin film," Thin Solid Films, vol. 570, May 2014, pp. 568-573. https://doi.org/10.1016/j.tsf.2014.05.028
  3. Y. Joung and S. Kang, "Characteristics of ITZO thin films according to substrate types for thin film solar cells," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 6, Dec. 2021, pp. 1095-1100.
  4. J. Jo and S. Chee, "Display Manufacturing and Application Technology in the Fourth Industrial Revolution," J. Digit. Contents Soc., vol. 19, no. 12, Dec. 2018. pp. 2423 -2429. https://doi.org/10.9728/dcs.2018.19.12.2423
  5. W. Liu, W. Hsieh, S. Chen, and C. Huang, "Improvement of CIGS solar cells with high performance transparent conducting Ti-doped GaZnO thin films," Sol. Energy, vol. 174, Sept. 2018, pp. 83-96. https://doi.org/10.1016/j.solener.2018.08.050
  6. D. Norton, Y. Heo, M. Ivill, K. Ip, S. Pearton, M. Chisholm, and T. Steiner, "ZnO: growth, doping & processing," Mater. Today, vol. 7, issue 6, June 2004, pp. 34-40.
  7. Y. Joung B. Choi, and S. Kang, "Effect of working pressure on the electrical and optical prooerties of ITZO thin films deposited on PES substrate with SiO2 buffer layer," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 5, Oct. 2019, pp. 887-892.
  8. S. Na, S. Kim, J. Jo, and D. Kim, "Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes," Adv. Mater., vol. 20, Nov. 2008, pp. 4061-4067. https://doi.org/10.1002/adma.200800338
  9. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, "Organic Solar Cells with Solution-Processed Graphene Transparent Electrodes," Appl. Phys. Lett., vol. 92, issue 26, July 2008, pp. 263302-1-263302-3. https://doi.org/10.1063/1.2924771
  10. B. Sarma, D. Barman, and B. Sarma, "AZO (Al:ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide," Appl. Surf. Sci., vol. 479, no. 15, June 2019, pp. 786-795. https://doi.org/10.1016/j.apsusc.2019.02.146
  11. Q. Bui, V. Consonni, S. Boubenia, G. Gay, C. Perret, M. Zeghouane, S. Labau, H. Roussel, X. Mescot, G. Ardila, and B. Salem, "High figure-of-merit in Al-doped ZnO thin films grown by ALD through the Al content adjustment," Materialia, vol. 31, Sept. 2023, pp. 101863 (1-9).
  12. K. Necib, T. Touam, A. Chelouche, L. Ouarez, D. Djouadi, and B. Boudine, "Investigation of the effects of thickness on physical properties of AZO sol-gel films for photonic device applications," J. Alloys Compd., vol. 735, no. 25, Feb. 2018, pp. 2236-2246. https://doi.org/10.1016/j.jallcom.2017.11.361
  13. Y. Zhao, W. Ding, Y. Xiao, and P. Yang, "Manipulating the optoelectronic characteristic of AZO films by magnetron sputtering power," Vacuum, vol. 210, Apr. 2023, pp. 111849.
  14. V. Anyanwu and M. Moodley, "PLD of transparent and conductive AZO thin films," Ceram. Int., vol. 49, issue 3, Feb. 2023, pp. 5311-5318. https://doi.org/10.1016/j.ceramint.2022.10.054
  15. Y. Auyoong, P. Yap, X. Huang, and S. Hamid, "Optimization of reaction parameters in hydrothermal synthesis: a strategy towards the formation of CuS hexagonal plates," Chem. Cent. J., vol. 7, Dec. 2013, pp. 1-12. https://doi.org/10.1186/1752-153X-7-67
  16. Y. Wang, W. Tang, L. Zhang, and J. Zhao, "Electron concentration dependence of optical band gap shift in Ga-doped ZnO thin films by magnetron sputtering," Thin Solid Films, vol. 565, no. 28, Aug. 2014, pp. 62-68. https://doi.org/10.1016/j.tsf.2014.06.046
  17. J. Kim, J. Lee, J. Lim, J. Kim, and S. Yun, "High-performance transparent conducting Ga-doped ZnO films deposited by RF magnetron sputter deposition," Jpn. J. Appl. Phys., vol. 49, Apr. 2010, pp. 04DP09-1-04DP09-4.