DOI QR코드

DOI QR Code

Prediction of TBM disc cutter wear based on field parameters regression analysis

  • Lei She (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology) ;
  • Yan-long Li (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology) ;
  • Chao Wang (School of Civil Engineering, Tianjin University) ;
  • She-rong Zhang (School of Civil Engineering, Tianjin University) ;
  • Sun-wen He (Power China Co., Ltd.) ;
  • Wen-jie Liu (School of Civil Engineering, Tianjin University) ;
  • Min Du (School of Civil Engineering, Tianjin University) ;
  • Shi-min Li (Power China Co., Ltd.)
  • Received : 2023.07.04
  • Accepted : 2023.11.28
  • Published : 2023.12.25

Abstract

The investigation of the disc cutter wear prediction has an important guiding role in TBM equipment selection, project planning, and cost forecasting, especially when tunneling in a long-distance rock formations with high strength and high abrasivity. In this study, a comprehensive database of disc cutter wear data, geological properties, and tunneling parameters is obtained from a 1326 m excavated metro tunnel project in leptynite in Shenzhen, China. The failure forms and wear consumption of disc cutters on site are analyzed with emphasis. The results showed that 81% of disc cutters fail due to uniform wear, and other cutters are replaced owing to abnormal wear, especially flat wear of the cutter rings. In addition, it is found that there is a reasonable direct proportional relationship between the uniform wear rate (WR) and the installation radius (R), and the coefficient depends on geological characteristics and tunneling parameters. Thus, a preliminary prediction formula of the uniform wear rate, based on the installation radius of the cutterhead, was established. The correlation between some important geological properties (KV and UCS) along with some tunneling parameters (Fn and p) and wear rate was discussed using regression analysis methods, and several prediction models for uniform wear rate were developed. Compared with a single variable, the multivariable model shows better prediction ability, and 89% of WR can be accurately estimated. The prediction model has reliability and provides a practical tool for wear prediction of disc cutter under similar hard rock projects with similar geological conditions.

Keywords

Acknowledgement

This research described in this paper were financially supported by the National Funds for Distinguished Young scientists of China (No. 52125904) and Young Scientist Fund (No. 52309171).

References

  1. Bruland, A. (1998), Hard Rock Tunnel Boring [Doctorate Thesis]. Norwegian University of Science and Technology, Trondheim, Norway. 
  2. Delisio, A. and Zhao, J. (2014), "A new model for TBM performance prediction in blocky rock conditions", Tunn. Undergr. Sp. Tech., 43, 440-452. https://doi.org/10.1016/j.tust.2014.06.004 
  3. Ewendt, G. (1989), Erfassung der Gesteinsabrasivitat und Prognose des Werkzeugverschleisses beim maschinellen Tunnelvortrieb mit Diskenmeisseln. Bochumer geol. u. geot. Arbeiten 33. Bochum. 
  4. Frenzel, C. (2011), "Disc cutter wear phenomenology and their implications on disc cutter consumption for TBM", Proceedings of the 45th US Rock Mechanics/Geomechanics Symposium, San Francisco. 
  5. Gehring, K. (1995), "Prognosis of advance rates and wear for underground mechanized excavations", Felsbau., 13(6), 439-448. (in German).  https://doi.org/10.1093/gh/13.3.439
  6. Gong, Q.M. and Zhao, J. (2009), "Development of a rock mass characteristics model for TBM penetration rate prediction", Int. J. Rock Mech. Min. Sci., 46, 8-18. https://doi:10.1016/j.ijrmms.2008.03.003. 
  7. Gong, Q.M., Yin, L.J., Ma, H.S. and Zhao, J. (2016), "TBM tunnelling under adverse geological conditions: An overview", Tunn. Undergr. Sp. Tech., 57, 4-17. https://doi.org/10.1016/j.tust.2016.04.002 
  8. Kim, K.Y., Jo, S.A., Ryu, H.H. and Cho, G.C. (2020), "Prediction of TBM performance based on specific energy", Geomech. Eng., 22(6), 489-496. https://doi.org/10.12989/gae.2020.22.6.489. 
  9. Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A. and Tavakoli, H.R. (2010), "TBM performance analysis in pyroclastic rocks: A case history of Karaj water conveyance tunnel", Rock Mech. Rock Eng., 43(4), 427-445. https://doi.org/10.1007/s00603-009-0060-2. 
  10. Hassanpour, J., Rostami, J. and Zhao, J. (2011), "A new hard rock TBM performance prediction model for project planning", Tunn. Undergr. Sp. Tech., 26, 595-603. https://doi.org/10.1016/j.tust.2011.04.004. 
  11. Hassanpour, J., Rostami, J., Azali, S.T. and Zhao, J. (2014), "Introduction of an empirical TBM cutter wear prediction model for pyroclastic and mafic igneous rocks; a case history of Karaj water conveyance tunnel, Iran", Tunn. Undergr. Sp. Tech., 43, 222-231. https://doi.org/10.1016/j.tust.2014.05.007. 
  12. He, M.M., Zhang, Z.Q., Zheng, J., Chen, F.F. and Li, N. (2020), "A new perspective on the constant m(i) of the hoek-brown failure criterion and a new model for determining the residual strength of rock", Rock Mech. Rock Eng., 53(9), 3953-3967. https://doi.org/10.1007/s00603-020-02164-6. 
  13. ISRM (1979), "Suggested methods for determining the uniaxial compressive strength and deformability of rock materials", Int. J. Rock Mech. Min. Sci. Geomech., 16, 135-140.  https://doi.org/10.1016/0148-9062(79)91451-7
  14. Jeon, Y.J. and Lee, C.J. (2023), "Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures", Geomech. Eng., 33(5), 463-475. https://doi.org/10.12989/gae.2023.33.5.463. 
  15. Karami, M., Zare, S. and Rostami, J. (2020), "Study of common wear prediction models for hard rock TBM disc cutters and comparison with field observation in Kerman water conveyance tunnel", Bull. Eng. Geol. Environ., 80(3), 1467-1476. https://doi.org/10.1007/s10064-020-01987-5. 
  16. Ko, T.Y., Kim, T.K., Son, Y. and Jeon, S. (2016), "Effect of geomechanical properties on Cerchar Abrasivity Index (CAI) and its application to TBM tunneling", Tunn. Undergr. Sp. Tech., 57, 99-111. https://doi.org/10.1016/j.tust.2016.02.006. 
  17. Lan, H., Xia, Y.M., Ji, Z.Y., Fu, J. and Miao, B. (2019), "Online monitoring device of disc cutter wear-design and field test", Tunn. Undergr. Sp. Tech., 89, 284-294. https://doi.org/10.1016/j.tust.2019.04.010. 
  18. Lan, H., Xia, Y.M., Miao, B., Fu, J. and Ji, Z.Y. (2020), "Prediction model of wear rate of inner disc cutter of engineering in Yinsong, Jilin", Tunn. Undergr. Sp. Technol., 99, 103338. https://doi.org/10.1016/j.tust.2020.103338. 
  19. Li, X.C., Li, X.G. and Yuan, D.J. (2017), "Application of an interval wear analysis method to cutting tools used in tunneling shields in soft ground", Wear., 392-393, 21-28. https://doi.org/10.1016/j.wear.2017.09.010. 
  20. Li, J.B., Jing, L.J. Zheng, X.F., Li, P.Y. and Yang, C. (2019), "Application and outlook of information and intelligence technology for safe and efficient TBM construction", Tunn. Undergr. Sp. Tech., 93, 103097. https://doi.org/10.1016/j.tust.2019.103097. 
  21. Li, Y.L., She, L., Wen, L.F. and Zhang, Q. (2020), "Sensitivity Analysis of Drilling Parameters in Rock Rotary Drilling Process Based on Orthogonal Test Method", Eng. Geol., 270, 105576. https://doi.org/10.1016/j.enggeo.2020.105576. 
  22. Li, Y.H., Tang, X.J., Yang, S. and Ding, Y.F. (2023), "Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models", Geomech. Eng., 33(5), 439-451. https://doi.org/10.12989/gae.2023.33.5.439. 
  23. Ling, X.Z., Kong, X.X., Tang, L., Cong, S.Y. and Tang, W.C. (2022), "Preliminary identification of potential failure modes of a disc cutter in soil-rock compound strata: Interaction analysis and case verification", Eng. Fail. Anal., 138, 105907. https://doi.org/10.1016/j.engfailanal.2021.105907. 
  24. Liu, Q.S., Huang, X., Gong, Q.M., Du, L.J., Pan, Y.C. and Liu, J.P. (2016), "Application and development of hard rock TBM and its prospect in China", Tunn. Undergr. Sp. Tech., 57, 33-46. https://doi.org/10.1016/j.tust.2016.01.034. 
  25. Liu, Q.S., Liu, J.P., Pan, Y.C., Zhang, X.P., Peng, X.X., Gong, Q.M. and Du, L.J. (2017), "A wear rule and cutter life prediction model of a 20-in. TBM cutter for granite: a case study of a water conveyance tunnel in China", Rock Mech. Rock Eng., 50, 1303-1320. https://doi.org/10.1007/s00603-017-1176-4. 
  26. Rabinowicz, E. (1995), Friction and wear of materials, John Wiley & Sons. 
  27. Ren, D.J., Shen, S.L., Arulrajah, A. and Cheng, W.C. (2018), "Prediction model of TBM disc cutter wear during tunneling in heterogeneous ground", Rock Mech. Rock Eng., 51, 3599-3611. https://doi.org/10.1007/s00603-018-1549-3. 
  28. Rostami, J. (1997), Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure[Doctorate Dissertation][D]. Golden, Colorado, USA: Colorado School of Mines. 
  29. Rostami, J. (2013), "Study of pressure distribution within the crushed zone in the contact area between rock and disc cutters", Int. J. Rock Mech. Min. Sci., 57(1), 172-186. https://doi.org/10.1016/j.ijrmms.2012.07.031. 
  30. She, L., Zhang, S.R., Wang, C., Du, M. and Yang, P. (2022a), "A cutting mechanics model of constant cross-section type disc cutter and its application based on dense core theory", Int J Rock Mech Min Sci., 150, 105025. https://doi.org/10.1016/j.ijrmms.2021.105025. 
  31. She, L., Zhang, S.R., Wang, C., Wu, Z.Q., Yu, L.C. and Wang, L.X. (2022b), "Prediction model for disc cutter wear during hard rock breaking based on plastic removal abrasiveness mechanism", Bull. Eng. Geol. Environ., 81, 432. https://doi.org/10.1007/s10064-022-02915-5. 
  32. She, L., Zhang, S.R., He, S.W., Wang, C., Li, L., Jing, Y. and Liu, Y. (2022c), "Investigation on wear prediction model of TBM disc cutter based on dense core theory", Chin. J. Geotech. Eng., 44(5), 1-7. (in Chinese). 
  33. She, L., Zhang, S.R., Wang, C., Li, Y.L. and Du, M. (2023), "A new method for wear estimation of TBM disc cutter based on energy analysis", Tunn. Undergr. Sp. Tech., 131, 104840. https://doi.org/10.1016/j.tust.2022.104840. 
  34. Shen, X., Yuan, D., Lin, X.T., Chen, X. and Peng, Y. (2022), "Evaluation and prediction of earth pressure balance shield performance in complex rock strata: A case study in Dalian, China". J. Rock Mech. Geotech. Eng., 15(6), 1491-1505. https://doi.org/10.1016/j.jrmge.2022.09.010. 
  35. Su, W.L., Li, X.G., Jin, D.L., Yang, Y., Qin, R.C. and Wang, X.Y., (2020), "Analysis and prediction of TBM disc cutter wear when tunneling in hard rock strata: A case study of a metro tunnel excavation in Shenzhen, China", Wear., 446-447, 203190. https://doi.org/10.1016/j.wear.2020.203190. 
  36. Sun, Z.C., Zhao, H.L., Hong, K.R., Chen, K., Zhou, J.J., Li, F.Y., Zhang, B., Song, F.L., Yang, Y.D. and He, R.Y. (2019), "A practical TBM cutter wear prediction model for disc cutter life and rock wear ability", Tunn. Undergr. Sp. Tech., 85, 92-99. https://doi.org/10.1016/j.tust.2018.12.010. 
  37. Sun, R.X., Mo, J.L., Zhang, M.Q., Su, Y.M. and Zhou, Z.R. (2022), "Cutting performance and contact behavior of partial-wear TBM disc cutters: A laboratory scale investigation", Eng. Fail. Anal., 137, 106253. https://doi.org/10.1016/j.engfailanal.2022.106253. 
  38. The National Standards Compilation Group of People's Republic of China GB/T50218-2014. Standard for Engineering Classification of Rock Masses. China Planning Press, Beijing, p. 84 (in Chinese). 
  39. Wan, Z.C., Sha, M.Y. and Zhou, Y.L. (2002a), "Study on disk cutters for hard rock (1), application of TB880E TBM in Qinling Tunnel", Modern. Tunn Technol., 39(5), 1-11. (in Chinese). 
  40. Wan, Z.C., Sha, M.Y. and Zhou, Y.L. (2002b), "Study on disk cutters for hard rock (2), application of TB880E TBM in Qinling Tunnel", Modern. Tunn Technol., 39(6), 1-12. (in Chinese). 
  41. Wang, L.H., Kang, Y.L., Zhao, X.J. and Zhang, Q. (2015), "Disc cutter wear prediction for a hard rock TBM cutterhead based on energy analysis", Tunn. Undergr. Sp. Tech., 50, 324-333. https://doi.org/10.1016/j.tust.2015.08.003. 
  42. Wang, F., Men, C.H., Kong, X.W. and Meng, L.X. (2019), "Optimum design and application research of Eddy current sensor for measurement of TBM disc cutter wear", Sensors., 19(19), 4230. https://doi.org/10.3390/s19194230. 
  43. Yang, J.H., Zhang, X.P., Ji. P.Q., Liu, Q.S., Lu, X.J., Wei, J.P., Qi, S.H., Fang, H.G., Fang, J.N. and Geng, Y.J. (2019), "Analysis of disc cutter damage and consumption of TBM1 section on water conveyance tunnel at Lanzhou water source construction engineering", Tunn. Undergr. Sp. Tech., 85, 67-75. https://doi.org/10.1016/j.tust.2018.11.040. 
  44. Yu, H.G., Tao, J.F., Huang, S., Qin, C.J., Xiao, D.Y. and Liu, C.L. (2021), "A field parameters-based method for real-time wear estimation of disc cutter on TBM cutterhead", Automat. Constr., 124, 103603. https://doi.org/10.1016/j.autcon.2021.103603. 
  45. Zhang, G., Tan, J., Zhang, L. and Xiang, Y. (2015), "Linear regression analysis for factors influencing displacement of high-filled embankment slopes", Geomech. Eng., 8(4), 511-521. https://doi.org/10.12989/gae.2015.8.4.511. 
  46. Zhang, S.R., She, L., Wang, C., Wang, Y.J., Cao, R.L., Li, Y.L. and Cao, K.L. (2021), "Investigation on the relationship among the Cerchar abrasivity index, drilling parameters and physical and mechanical properties of the rock", Tunn. Undergr. Sp. Tech., 112, 103907. https://doi.org/10.1016/j.tust.2021.103907. 
  47. Zhao, H.M., Shu, B., Xia, Y.M. and Zheng, W. (2014), "Study of wear prediction for TBM cutter based on abrasive wear model", J. Rail. Sci. Eng., 11(8), 152-158. (in Chinese). 
  48. Zhou, W., Li, S.L., Ma, G., Chang, X.L., Cheng, Y.G. and Ma, X. (2016), "Assessment of the crest cracks of the Pubugou rockfill dam based on parameters back analysis", Geomech. Eng., 11(4), 571-585. https://doi.org/10.12989/gae.2016.11.4.571.