DOI QR코드

DOI QR Code

An analytical solution for compaction grouting problem considering exothermic temperature effect of slurry

  • Chao Li (State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology) ;
  • Yingke Liu (School of Safety Engineering, China University of Mining and Technology) ;
  • Man Yuan (School of Safety Engineering, China University of Mining and Technology) ;
  • Tengrui Yang (School of Safety Engineering, China University of Mining and Technology)
  • Received : 2023.04.26
  • Accepted : 2023.11.23
  • Published : 2023.12.25

Abstract

In this paper, an analytical solution of large-strain cylindrical cavity expansion in compaction grouting problem under temperature field is given. Considering the stress increment caused by temperature, the analytical solution of cavity expansion under traditional isothermal conditions is improved by substituting the temperature stress increment into the cavity expansion analysis. Subsequently, combined with the first law of thermodynamics, the energy theory is also introduced into the cylindrical cavity expansion analysis, and the energy dissipation solution of cylindrical cavity expansion is derived. Finally, the validity and reliability of solution are proved by comparing the results of expansion pressure with those in published literatures. The results show that the dimensionless expansion pressure increases with the increase of temperature, and the thermal response increases with the increase of dilation angle. The higher the exothermic temperature of grouting slurry, the greater the plastic deformation energy of the surrounding soil, that is, the greater the influence on the surrounding soil deformation and the surrounding environment. The proposed solution not only enrich the theoretical system of cavity expansion, but also can be used as a theoretical tool for energy geotechnical engineering problems, such as CPT, nuclear waste disposal, energy pile and chemical grouting, etc.

Keywords

Acknowledgement

The authors thank Project 2022QN1019 supported by the Fundamental Research Funds for the Central Universities, and Doctor of entrepreneurship and innovation in Jiangsu Province (JSSCBS20221497), the Science and Technology Planning Project of Jiangsu Province (BK20231079).

References

  1. Bishop, R.F., Hill, R. and Mott, N.F. (1945), "Theory of identation and hardness tests", Proc. Phys. Soc., 57(57), 147-159. https://doi.org/10.1088/0959-5309/57/3/301.
  2. Carter, J.P. and Yeung, S.K. (1985), "Analysis of cylindrical cavity expansion in a strain weakening material", Comput. Geotech., 1(3), 161-180. https://doi.org/10.1016/0266-352X(85)90021-7.
  3. Carter, J.P. and Yu, H.S. (2022), "Cavity expansion in cohesive-frictional soils with limited dilation", Geotechnique, 1-7. https://doi.org/10.1680/jgeot.21.00141.
  4. Castro, J., Karstunen, M. and Sivasithamparam, N. (2014), "Influence of stone column installation on settlement reduction", Comput. Geotech., 59(3), 87-97. https://doi.org/10.1016/j.compgeo.2014.03.003.
  5. Chadwick, P. (1959), "The quasi-static expansion of a spherical cavity in metals and ideal soils", Q. J. Mech. Appl. Math., 12(1), 52-71. https://doi.org/10.1093/qjmam/12.1.52.
  6. Chen, S.L. and Abousleiman, Y.N. (2013). "Exact drained solution for cylindrical cavity expansion in modified Cam Clay soil", Geotechnique, 63(6), 510. http://doi.org/10.1680/geot.11.P.088.
  7. Chen, H.H., Li, L. and Li, J.P. (2020), "An elastoplastic solution for spherical cavity undrained expansion in overconsolidated soils", Comput. Geotech., 12(6), 103759. https://doi.org/10.1016/j.compgeo.2020.103759.
  8. Collins, I.F. and Stimpson, J.R. (1994), "Similarity solutions for drained and undrained cavity expansions in soils", Geotechnique, 44(1), 21-34. https://doi.org/10.1016/0148-9062(94)90975-x.
  9. Collins, I.F. and Yu, H.S. (1996), "Undrained cavity expansions in critical state soils", Int. J. Numer. Anal. Meth. Geomech., 20(7), 489-516. https://doi.org/10.1002/(SICI)1096-9853(199607)20:7<489::AID-NAG829>3.0.CO;2-V.
  10. Durban, D. and Masri, R. (2004), "Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium", Int. J. Solids Struct., 41(20), 5697-5716. https://doi.org/10.1016/j.ijsolstr.2004.03.009.
  11. Gaaloul, I., Montassar, S. and Frikha, W. (2021). "Thermal effects on limit pressure in a cylindrical cavity expansion", Innov. Infrastruct. So., 6(4), 1-11. https://doi.org/10.1007/s41062-021-00562-5.
  12. Li, C. and Mo, P.Q. (2022), "Energy dissipation analysis for large-strain cylindrical cavity expansion problem in cohesive-frictional soils", Appl. Math. Model., 111(1), 681-695. https://doi.org/10.1016/j.apm.2022.07.015.
  13. Luo, W., Li, J.B., Zou, J.F., Zhang, P. and Rong, Y. (2022), "A novel simple solution to cavity expansion problem in crushable granular materials based on energy dissipation method", Int. J. Geomech., 22(2), 04021281, https://doi.org/10.1061/(ASCE)GM.1943-5622.0002271.
  14. Manandhara, S. and Yasufuku, N. (2013), "Vertical bearing capacity of tapered piles in sands using cavity expansion theory", Soils Found., 53(6), 853-867. http://doi.org/10.1016/j.sandf.2013.10.005.
  15. Marchi, M., Gottardi, G. and Soga, K. (2014), "Fracturing pressure in clay", J. Geotech. Geoenviron. Eng., 140(2), 04013008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001019.
  16. Marshall, A.M. (2012), "Tunnel-pile interaction analysis using cavity expansion methods", J. Geotech. Geoenviron. Eng., 138(10), 1237-1246. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000709.
  17. Mo, P.Q., Marshall, A.M. and Yu, H.S. (2015), "Centrifuge modelling of cone penetration tests in layered soils", Geotechnique, 65(6), 468-481. http://doi.org/10.16 80/geot.14.P.176. https://doi.org/10.1680/geot.14.P.176
  18. Niu, J., Wang, B., Feng, C. and Chen, K. (2020), "Experimental research on viscosity characteristics of grouting slurry in a high ground temperature environment", Mater., 13(14), 3221. https://doi.org/10.3390/ma13143221.
  19. Papanastasiou, P. and Durban, D. (1997), "Elastoplastic analysis of cylindrical cavity problems in geomaterials", Int. J. Numer. Anal. Method. Geomech., 21(2), 133-149. https://doi.org/10.1002/(SICI)10969853(199702)21:2<133::AID-NAG866>3.0.CO;2-A.
  20. Patino-Ramirez, F., Wang, Z.J., Chau, D.H. and Arson, C. (2022), "Back-calculation of soil parameters from displacement-controlled cavity expansion under geostatic stress by FEM and machine learning", Acta Geotech., 1-14. https://doi.org/10.1007/s11440-022-01698-z.
  21. Randolph, M.F., Carter, J.P. and Wroth, C.P. (1979), "Driven piles in clay-the effects of installation and subsequent consolidation", Geotechnique, 29(4), 361-393. http://doi.org/10.1680/geot.1981.31.2.291.
  22. Russell, A.R. and Khalili, N. (2002), "Drained cavity expansion in sands exhibiting particle crushing", Int. J. Numer. Anal. Meth. Geomech., 26(4), 323-340. https://doi.org/10.1002/nag.203.
  23. Salgado, R., Mitchell, J.K. and Jamiolkowski, M. (1997), "Cavity expansion and penetration resistance in sand", J. Geotech. Geoenviron. Eng., 123(4), 344-354. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(344).
  24. Shi, M., Wang, F. and Luo, J. (2010), "Compressive strength of polymer grouting material at different temperatures", J. Wuhan Univ. Technol.-Mater. Sci. Ed., 25(6), 962-965. https://doi.org/10.1007/s11595-010-0129-5.
  25. Sivasithamparam, N. and Castro, J. (2018). "Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: theoretical solution", Acta Geotech., 13(3), 729-746. https://doi.org/10.1007/s11440-017-0587-4.
  26. Sivasithamparam, N. and Castro, J. (2020), "Undrained cylindrical cavity expansion in clays with fabric anisotropy and structure: Theoretical solution", Comput. Geotech., 120(1), 103386. https://doi.org/10.1016/j.compgeo.2019.103386.
  27. Sun, C.Z., Zhang, Q., Zhao, T.F. and Zhao, H.N. (2014), "Experimental study on the stress-temperature curve of the super high early strength grouting material at elevated temperature", Appl. Mech. Mater. Trans Tech Publications Ltd, 63(8), 1521-1525. https://doi.org/10.4028/www.scientific.net/AMM.638-640.1521.
  28. Thiyyakkandi, S. (2022), "Analysis of cavity expansion and contraction in unsaturated residual soils", Geomech. Eng., 28(4), 405-419. https://doi.org/10.12989/gae.2022.28.4.405.
  29. Tolooiyan, A. and Gavin, K. (2011), "Modelling the cone penetration test in sand using cavity expansion and arbitrary Lagrangian Eulerian finite element methods", Comput. Geotech., 38(4), 482-490. https://doi.org/10.1016/j.compgeo.2011.02.012.
  30. Vesic, A.S. (1972), "Expansion of cavities in infinite soil mass", J. Soil Mech. Found. Div., 98(3), 265-290. http://doi.org/10.1061/JSFEAQ.0001740.
  31. Yang, X.L. and Pan, Q.J. (2015), "Three dimensional seismic and static stability of rock slopes", Geomech. Eng., 8(1), 97-111. https://doi.org/10.12989/gae.2015.8.1.097.
  32. Yeung, A.T., Au, S.K.A. and Lamo, T.H. (2012), "Numerical simulation of pressure-controlled cavity expansion process in clay at constant volumetric expansion rate", Geotechnique, 62(4), 353-357. https://doi.org/10.1680/geot.9.P.106.
  33. Yuan, G., Zhao, Z. and Li, Q. (2020), "Bond behavior between cement-based grouting material and steel bar under repetitive loading after being exposed to high temperature at early age", Constr. Build. Mater., 26(2), 120023. https://doi.org/10.1016/j.conbuildmat.2020.120023.
  34. Yu, M.H. (1983), "Twin shear stress yield criterion", Inter. J. Mech. Sci., 25(1), 71-74. https://doi.org/10.1016/0020-7403(83)90088-7.
  35. Yu, H.S. and Houlsby, G.T. (1991), "Finite cavity expansion in dilatant soils: Loading analysis", Geotechnique, 41(2), 173-183. https://doi.org/10.1680/geot.1991.41.2.173.
  36. Zhao, C. F., Fei, Y., Zhao, C., et al. (2017). "Analysis of expanded radius and internal expanding pressure for undrained cylindrical cavity expansion". Int. J. Geomech., 18(2), 04017139. http://doi.org/10.1061/(ASCE)GM.1943-5622.0001058.
  37. Zhang, B., Wang, B.L., Zhong, Y.H., Wang, S., Li, X. and Wnag, S. (2021), "Temperature field variation law of low exothermic polymer grouting material in repairing void damage of frozen soil subgrade", Advan. Mater. Sci. Eng., 1-11. https://doi.org/10.1155/2021/6670515.
  38. Zhang, Y., Li, T., Feng, W., Xiong, Z. and Zhang, G. (2020), "Effects of temperature on performances and hydration process of sulphoaluminate cement-based dual liquid grouting material and its mechanisms", J. Therm. Anal. Calorim., 139(1), 47-56. https://doi.org/10.1007/s10973-019-08426-y.
  39. Zhou, H., Kong, G., Liu, H., and Laloui, L. (2018). "Similarity solution for cavity expansion in thermoplastic soil", Int. J. Numer. Anal. Meth. Geomech., 42(2). https://doi.org/10.1002/nag.2724.
  40. Zou, J.F., Chen, K.F. and Pan, Q.J. (2017), "Influences of seepage force and out-of-plane stress on cavity contracting and tunnel opening", Geomech. Eng., 13(6), 907-928. https://doi.org/10.12989/gae.2017.13.6.907.