DOI QR코드

DOI QR Code

Effects of structural characteristics of screw conveyor on spewing during EPB shield tunnelling

  • Xiaochun Zhong (College of Civil and Transportation Engineering, Hohai University) ;
  • Siyuan Huang (College of Civil and Transportation Engineering, Hohai University) ;
  • Rongguo Huai (China Railway No.5 Engineering Group Co., LTD.) ;
  • Yikang Hu (China Railway No.5 Engineering Group Co., LTD.) ;
  • Xuquan Chen (China Railway No.5 Engineering Group Co., LTD.)
  • 투고 : 2022.07.24
  • 심사 : 2023.08.31
  • 발행 : 2023.12.25

초록

During EPB shield tunnelling, construction speed and safety are severely affected by spewing. In this study, a theoretical seepage model is established to capture of the effects of screw conveyor geometry and turbulent flow on spewing. Experimental test results are used to verify the proposed theoretical seepage model. It is found that the seepage is greatly affected by the length of screw conveyor and soil permeability. The proposed model can increase the screw conveyor length and reduce soil discharge sections simultaneously, the permeability of treated muck thus decreases by one order of magnitude. By using the proposed theoretical seepage model, the criterion of critical soil permeability used to identify spewing is proposed. When the water head applied at tunnel face reaches 40 m and 50 m, the critical permeability coefficients of treated muck should be less than 10-5 m/s and 10-6 m/s to avoid spewing. For a given permeability coefficient of soil, the water flow rate is overestimated if structural characteristics of screw conveyor is not considered. Consequently, the occurrence of spewing is greatly overestimated, which increases construction cost substantially.

키워드

과제정보

The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China (52178387,51678217).

참고문헌

  1. Budach, C. and Thewes, M. (2015), "Application ranges of EPB shields in coarse ground based on laboratory research", Tunn. Undergr. Sp. Tech., 50(8), 296-304. https://doi.org/10.1016/j.tust.2015.08.006.
  2. Cui, G.Z., Liu, Y.Q., Xiao, Y.Q., Sun. C.Y., Sun. Q.D. and Zhang, W.L. (2022), "Mechanics simulation of EPB shield screw conveyor's screw shaft based on fluid-solid coupling", J. Machine Design, 39(7), 90-97. https://doi.org/1001-2354(2022)39:7<90:JYLGOH>2.0.TX;2-M. 1001-2354(2022)39:7<90:JYLGOH>2.0.TX;2-M
  3. Jiang, Y.S., Chen, D., Wang, C.H., Yang, Z.Y. and Liu, P. (2007), "Mechanical analysis of double screw conveyors in earth pressure balance shield boring", Tunn. Constr., (6), 15-18. https://doi.org/10.3969/j.issn.1672-741X.2007.06.005.
  4. Lu, H., Shi, J.W., Ng, C.W.W. and Lv, Y.R. (2020), "Three-dimensional centrifuge modeling of the influence of side-byside twin tunneling on a piled raft", Tunn. Undergr. Sp. Tech., 103, 103486. https://doi.org/10.1016/j.tust.2020.103486.
  5. Lu, H., Shi, J.W., Wang, Y. and Wang, R. (2019), "Centrifuge modeling of tunneling-induced ground surface settlement in sand", Undergr. Sp., 4, 302-309. https://doi.org/10.1016/j.undsp.2019.03.007.
  6. Merritt, A.S. and Mair, R.J. (2006), "Mechanics of tunnelling machine screw conveyors: model tests", Geotechnique, 56(9), 605-615. https://doi.org/10.1680/geot.2006.56.9.605.
  7. Merritt, A.S. and Mair, R.J. (2008), "Mechanics of tunnelling machine screw conveyors: a theoretical model", Geotechnique, 58(2), 79-94. https://doi-org/10.1680/geot.2008.58.2.79.
  8. Mi, S.P. (2020), "Research on soil plug pressure-bearing characteristics of screw conveyor with variable pitch", Modern Tunn. Tech., 57(4), 119-126. https://doi.org/10.13807/j.cnki.mtt.2020.04.016.
  9. Peila, D., Oggeri, C. and Vinai, R. (2007), "Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operations", J. Geotech. Geoenviron. Eng., 133(12), 1622-1625. https://doi.org/10.1061/(ASCE)1090-0241.
  10. Prendes-Gero, M.B., Lopez-Gayarre, F., Menendez-Fernandez, C. and Rodriguez-Avial Llardent, M. (2013), "Forensic analysis of the failure of the foundations of a tunnel built to channel the course of a river", Eng. Fail. Anal., 32, 152-166. https://doi.org/10.1016/j.engfailanal.2013.01.004.
  11. Shangguan, Z.C., Li, S.J., Sun, W., Luan, M.T. and Liu, B. (2010), "Controlling earth pressure of head chamber of earth pressure balance (EPB) shield machine", J. China Coal Soc., 35(3), 402-405. https://doi.org/0253-9993(2010)35:3<402:TYPHDG>2.0.TX;2-X. 10)35:3<402:TYPHDG>2.0.TX;2-X
  12. Shao, X.K., Yang, Z.Y., Jiang, Y.S., Yang, X. and Qi, W.Q. (2022), "Field test and numerical study of the effect of shield tail-grouting parameters on surface settlement", Geomech. Eng., 29(5), 509-522. https://doi.org/10.12989/gae.2022.29.5.509.
  13. Shi, J.W., Chen Y.H., Lu, H., Ma, S.K. and Ng, C.W.W. (2022), "Centrifuge modeling of the influence of joint stiffness on pipeline response to underneath tunnel excavation", Can. Geotech. J., 59(9), 1568-1586. https://doi.org/10.1139/cgj-2020-0360.
  14. Shi, J.W., Wang, J.P., Chen Y.H., Shi, C., Lu, H., Ma, S.K. and Fan, Y.B. (2023), "Physical modeling of the influence of tunnel active face instability on existing pipelines", Tunn. Undergr. Sp. Tech., 140, 105281. https://doi.org/10.1016/j.tust.2023.105281.
  15. Talebi, K., Memarian, H., Rostami, J. and Gharahbagh, E.A. (2015), "Modeling of soil movement in the screw conveyor of the earth pressure balance machines (EPBM) using computational fluid dynamics", Tunn. Undergr. Sp. Tech., 47, 136-142. https://doi.org/10.1016/j.tust.2014.12.008.
  16. Wang, L., Zhu, W., Qian, Y., Xu, C., Hu, J. and Xing, H. (2020), "Phenomenon and critical conditions of chamber soil sliming during EPB shield tunneling in water-rich weathered diorite: case study of Jinan metro, China", Adv. Civil Eng., 2020. https://doi.org/10.1155/2020/6530832.
  17. Wang, S., Huang, S. and Qiu, T. (2020), "Analytical study of the permeability of a foam-conditioned soil", Int. J. Geomech., 20(8), 1-8. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001750.
  18. Xue, Y.G., Li, X., Qiu, D.H., Ma, X.M., Kong, F.M., Qu, C.Q. and Zhao, Y. (2019), "Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis", Geomech. Eng., 19(3), 283-293. https://doi.org/10.12989/gae.2019.19.3.283.
  19. Zhang, Y., Yang, J. and Yang, F. (2015), "Field investigation and numerical analysis of landslide induced by tunneling", Eng. Fail. Anal.. 47, 25-33. https://doi.org/10.1016/j.engfailanal.2014.09.011.
  20. Zhao, Z.Z., Cui, M., Jing, M., Zhao, B., Wang, X. and Wang, Z. (2020), "Blowout early warning of earth pressure balance shield during the construction process", J. Beijing Jiaotong Univ., 33(6), 96-112. https://doi.org/10.1016/j.engfailanal.2015.08.033.
  21. Zheng, G., Dai, X. and Diao, Y. (2015), "Parameter analysis of water flow during EPBS tunnelling and an evaluation method of spewing failure based on a simplified model", Eng. Fail. Anal., 26(1), 96-112. https://doi.org/10.1016/j.engfailanal.2015.08.033.
  22. Zhou, X. and Yang, Y. (2020), "Effect of foam parameters on cohesionless soil permeability and its application to prevent the water spewing," Appl. Sci., 10(5), 1787-1794. https://doi.org/10.3390/app10051787.
  23. Zhu, W., Qin, J.S. and Wei, K.L. (2004), "Research on the mechanism of the spewing in the EPB shield tunneling", Chinese J. Geotech. Eng., 26(5), 589-593. https://doi.org/10.3321/j.issn:1000-4548.2004.05.003.