DOI QR코드

DOI QR Code

ON THE SPECTRUM AND FINE SPECTRUM OF THE UPPER TRIANGULAR DOUBLE BAND MATRIX U (a0, a1, a2; b0, b1, b2) OVER THE SEQUENCE SPACE ℓp

  • Nuh Durna (Department of Mathematics, Faculty of Sciences, Sivas Cumhuriyet University) ;
  • Rabia Kilic (Department of Mathematics, Faculty of Sciences, Sivas Cumhuriyet University)
  • Received : 2022.06.15
  • Accepted : 2023.07.12
  • Published : 2023.12.20

Abstract

The purpose of this article is to obtain the spectrum, fine spectrum, approximate point spectrum, defect spectrum and compression spectrum of the double band matrix U (a0, a1, a2; b0, b1, b2), b0, b1, b2≠0 on the sequence space ℓp (1 < p < ∞).

Keywords

References

  1. J. Appell, E. De Pascale, and A. Vignoli, Nonlinear Spectral Theory, Walter de Gruyter, Berlin, New York, 2004.
  2. F. Basar, N. Durna, and M. Yildirim, Subdivisions of the spectra for genarilized difference operator over certain sequence spaces, Thai J. Math. 9 (2011), no. 1, 285-295.
  3. R. Das, On the spectrum and fine spectrum of the upper triangular matrix U(r1, r2; s1, s2) over the sequence space c0, Afr. Mat. 28 (2017), 841-849. https://doi.org/10.1007/s13370-017-0486-8
  4. N. Durna and M. Yildirim, Subdivision of the spectra for factorable matrices on c0, GU J. Sci. 24 (2011), no. 1, 45-49.
  5. N. Durna, M. Yildirim, and R. Kili,c, Partition of the spectra for the generalized difference operator B(r, s) on the sequence space cs, Cumhuriyet Sci. J. 39 (2018), no. 1, 7-15. https://doi.org/10.17776/csj.369069
  6. N. Durna, Subdivision of spectra for some lower triangular doule-band matrices as operators on c0, Ukr. Mat. Zh. 70 (2018), no. 7, 913-922. https://doi.org/10.1007/s11253-018-1551-7
  7. N. Durna and R. Kilic, Spectra and fine spectra for the upper triangular band matrix U(a0, a1, a2; b0, b1, b2) over the sequence space c0, Proyecciones (Antofagasta) 7 (2019), no. 1, 145-162.
  8. J. Fathi, On the fine spectrum of generalized upper triangular double-band matrices Δuv over the sequence spaces c0 and c, Int. J. Nonlinear Anal. Appl. 7 (2016), no. 1, 31-43.
  9. S. Goldberg, Unbounded Linear Operators, McGraw Hill, New York, 1966.
  10. M. Gonzalez, The fine spectrum of the Cesaro operator in ℓp (1 < p < ∞), Arch. Math. 44 (1985), 355-358. https://doi.org/10.1007/BF01235779
  11. P. D. Srivastava and S. Kumar, Fine spectrum of the generalized difference operator Δv on sequence space ℓ1, Thai J. Math. 8 (2010), no. 2, 221-233.
  12. M. Stieglitz, H. Tietz, Matrix tranformationen von Folgeraumen Eine Ergebnisubersicht., Math. Z. 154 (1977), 1-16. https://doi.org/10.1007/BF01215107
  13. B. C. Tripathy and P. Saikia, On the spectrum of the Cesaro operator C1 on ${\bar{bv_0}}$ ∩ ℓ, Math. Slovaca 63 (2013), no. 3, 563-572. https://doi.org/10.2478/s12175-013-0118-1
  14. B. C. Tripathy and R. Das, Fine spectrum of the upper triangular matrix U(r, 0, 0, s) over the squence spaces c0 and c, Proyecciones J. Math. 37 (2018), no. 1, 85-101. https://doi.org/10.4067/S0716-09172018000100085
  15. R. B. Wenger, The fine spectra of Holder summability operators, Indian J. Pure Appl. Math. 6 (1975), 695-712.
  16. M. Yildirim, On the spectrum of the Rhaly operators on c0 and c, Indian J. Pure Appl. Math. 29 (1998), 1301-1309.