References
- Albright, N. (1977), Small-Amplitude Periodic Sloshing Modes of a Liquid in a Vertical Right Circular Cylinder With a Concave Spheroidal Bottom, Lawrence Berkeley National Laboratory.
- Bao, G. (1994), "Numerical calculation of steady meniscus of liquid in a slow spin container under a micro gravity field", J. Eng. Mech., 14(2), 147-154.
- Bauer, H. and Eidel, W. (1989), "Liquid oscillations in a prolate spheroidal container", Ingenieur-Archive, 59(5), 371-381. https://doi.org/10.1007/BF00534067
- Chatjigeorgiou, I.K. and Miloh, T. (2014), "Free-surface hydrodynamics of a submerged prolate spheroid in finite water depth based on the method of multipole expansions", Quart. J. Mech. Appl. Math., 67(4), 525-552. https://doi.org/10.1093/qjmam/hbu016.
- Concus, P., Crane, G.E. and Satterlee, H.M. (1969), "Small amplitude lateral sloshing in spheroidal containers under low gravitational conditions", Final Report, No. NASA-CR-72500.
- Coney, T.A. and J. Salzman (1971), Lateral Sloshing in Oblate Spheroidal Tanks Under Reduced-and Normal-Gravity Conditions, National Aeronautics and Space Administration.
- Coogan, S.B. and Green, S. (2019), "critical review of damping prediction methods for annular ring slosh baffles", AIAA Propulsion and Energy 2019 Forum, 4436. https://doi.org/10.2514/6.2019-4436.
- Dodge, F.T. and Kana, D.D. (1987), "Dynamics of liquid sloshing in upright and inverted bladdered tanks", J. Fluid. Eng., 109(1), 58-63. https://doi.org/10.1115/1.3242617.
- Eidel, W. (1989), "Non-linear liquid oscillations in prolate spheroidal containers", Zeitschrift fur Flugwissenschaften and Weltraumforschung, 159-165.
- Howard, A. Flanderstrw Systems Group under Contract to Manned Spacecraft Center (1972), Prolate Spheroidal Slosh Model for Fluid Motion, National Aeronautics and Space Administration.
- Ibrahim, R.A. (2005), Liquid Sloshing Dynamics: Theory and Applications, Cambridge University Press, UK.
- Leonard, H.W. and Walton, W.C. (1961), An Investigation of The Natural Frequencies and Mode Shapes of Liquids in Oblate Spheroidal Tanks, National Aeronautics and Space Administration.
- Mavrakos, S.A. and Chatjigeorgiou, I.K. (2012), "Hydrodynamic exciting forces on immersed prolate spheroids", 27th International Workshop of Water Waves and Floating Bodies, April.
- Stephens, D.G., Leonard, H.W. and Silveira, M.A. (1961), An Experimental Investigation of The Damping of Liquid Oscillations in An Oblate Spheroidal Tank with and Without Baffles, National Aeronautics and Space Administration.
- Storey, J.M. and Kirk, D.R. (2020), "Experimental investigation of spherical tank slosh dynamics with water and liquid nitrogen", J. Spacecraft Rocket., 57(5), 930-944. https://doi.org/10.2514/1.A34471.
- Storey, J.M., Kirk, D., Marsell, B. and Schallhorn, P. (2020), "Progress towards a microgravity CFD validation study using the ISS SPHERES-SLOSH experiment", AIAA Propulsion and Energy 2020 Forum, 3814. https://doi.org/10.2514/6.2020-3814.
- Sumner, I.E. (1965), Experimentally Determined Pendulum Analogy of Liquid Sloshing in Spherical and Oblate-Spheroidal Tanks, National Aeronautics and Space Administration.
- Turner, M. and Bridges, T. (2013), "Nonlinear energy transfer between fluid sloshing and vessel motion", J. Fluid Mech., 719, 606-636. https://doi.org/10.1017/jfm.2013.29.
- Utsumi, M. (2008), "Slosh analysis for teardrop tank", J. Spacecraft Rocket., 45(5), 1053-1060. https://doi.org/10.2514/1.35156.
- Weingarten, V.I., Seide, P. and Peterson, J.P. (1968), Buckling of Thin-Walled Circular Cylinders, National Aeronautics and Space Administration.
- Yang, H. and Peugeot, J. (2010), "Propellant sloshing parameter extraction from CFD analysis", 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. https://doi.org/10.2514/6.20106889.
- Yang, H.Q., West, J., Brodnick, J. and Eberhart, C. (2016), "Development of semi-empirical damping equation for baffled tank with oblate spheroidal dome", JANNAF Modeling and Simulation (MSS) Meeting (No. M16-5415), December
- Zang, Q., Liu, J., Zhou, Y. and Lin, G. (2021), "On investigation of liquid sloshing in cylindrical tanks with single and multiply connected domains using isogeometric boundary element method", J. Press. Ves. Technol., 143(2), 021402. http://doi.org/10.1002/stc.2184.