DOI QR코드

DOI QR Code

Computation of aerodynamic coefficients of a re-entry vehicle at Mach 6

  • R.C. Mehta (Department of Aeronautical Engineering, Noorul Islam Centre for Higher Education) ;
  • E. Rathakrishnan (Department of Aerospace Engineering, Indian institute of Technology)
  • 투고 : 2023.09.06
  • 심사 : 2023.11.28
  • 발행 : 2023.09.25

초록

The paper evaluates the aerodynamic coefficients on a blunt-nose re-entry capsule with a conical cross-section followed by a cone-flare body. A computer code is developed to solve three-dimensional compressible inviscid equationsfor flow over a Space Recovery Experiment (SRE) configuration at different flare-cone half-angle at Mach 6 and angle of attack up to 5°, at 1° interval. The surface pressure variation is numerically integrated to obtain the aerodynamic forces and pitching moment. The numerical analysis reveals the influence of flare-cone geometry on the flow characteristics and aerodynamic coefficients. The numerical results agree with wind tunnel results. Increase of cone-flare angle from 25° to 35° results in increase of normal force slope, axial forebody drag, base drag and location of centre of pressure by 62.5%, 56.2% and 33.13%, respectively, from the basic configuration ofthe SRE of 25°.

키워드

참고문헌

  1. Desikan, S.L.N., Patil, M.N. and Subramanian, S. (2015), "Understanding of flow features over a typical crew module at Mach 4", Aeronaut. J., 119, 727-746. https://doi.org/10.1017/S0001924000010794.
  2. Hayes, W.D. and Probstein, R.F. (1959), Hypersonic Flow Theory, Academic Press, New York, USA.
  3. Hornung, H., Martinez Schramm, J. and Hannemann, K. (2019), "Hypersonic flow over spherically blunted cone modules for atmospheric entry. Part 1. The sharp cone and the sphere", J. Fluid Mech., 871, 1097-1116. https://doi.org/10.1017/jfm.2019.342.
  4. Hu. Y., Huang, H. and Zhang, Z. (2017), "Numerical simulation of a hypersonic flow past a blunt body", Int. J. Numer. Meth. Heat Fluid Flow, 27(6), 1351-1364. https://doi.org/10.1108/HFF-05-2016-0187.
  5. Jameson, A., Schmidt, W. and Turkel, E. (1981), "Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes", 14th Fluid and Plasma Dynamics Conference, June.
  6. Kalimuthu, R. (2009), "Experimental investigation of hemispherical nosed cylinder with and without spike in a hypersonic flow", Ph.D. Thesis, Department of Aerospace Engineering, Indian Institute of Technology, Kanpur, India.
  7. Lamb, J.P. and Oberkampf, W.L. (1995), "Review and development of base pressure and base heating correlations in Supersonic flow", J. Spacecraft Rocket., 32(1), 8-23. https://doi.org/10.2514/3.26569.
  8. Laurence, S.J., Schramm, J.M. and Hannemann, K. (2012), "Force and moment measurements on a freeflying capsule model in a high-enthalpy shock tunnel", 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference including the Aerospace T&E Days Forum, 2861. https://doi.org/10.2514/6.2012-2861.
  9. Liever, P.A., Habchi, S.D., Burnell, S.I. and Lingard, J.S. (2003), "Computational fluid dynamics prediction of the Beagle 2 aerodynamic data base", J. Spacecraft Rocket., 40(5), 632-638. https://doi.org/10.2514/2.691.
  10. Lin, T.C., Sproul, L.K., Kim, M., Olmos, M. and Feiz, H. (2006), "Hypersonic reentry vehicle wake flow fields at angle of attack", 44th AIAA Aerospace Sciences Meeting and Exhibit, 582. https://doi.org/10.2514/6.2006-582.
  11. MacCormack, R.W. (2014), Numerical Computation of Compressible and Viscous Flow, American Institute of Aeronautics and Astronautics, Inc., USA.
  12. Mehta, R.C. (2013d), "Computational fluid dynamics analysis over a re-entry capsule at Mach 6", AIAA Scitech 2023 Forum, 2114. https://doi.org/10.2514/6.2023-2114.
  13. Mehta, R.C. (2017c), "Multi-block structured grid generation for computational fluid dynamics", Scholar J. Eng. Technol., 5(8), 387-219. https://doi.org/10.21276/sjet.
  14. Mehta, R.C. (2019a), "Numerical simulation of base pressure and drag of space re-entry capsules at high speed, hypersonic vehicles-Past, present and future developments", https://doi.org/10.5772/intechopen.83651.
  15. Mehta, R.C. (2020b), "Computation of base pressure based on to fill-up the growing space applied to reentry capsules", AIAA Aviation 2020 Forum, 2711. https://doi.org/10.2514/6.2020-2711.
  16. Murphy, K.J., Bibb, K.L., Brauckmann, G.J., Rhode, M.N., Owens, B., Chan, D.T., Walker, E.L., Bell, J.H. and Wilson, T.M. (2011), "Orion crew module aerodynamic testing", 29th AIAA Applied Aerodynamics Conference, 3502. https://doi.org/10.2514/6.2011-3502.
  17. Otsu, H. (2021), "Aerodynamic characteristics of re-entry capsules with hyperbolic contours", Aerosp., 8, 287. https://doi.org/10.3390/aerospace8100287.
  18. Ottens, H.B.A. (2001), "Preliminary computational investigation on aerodynamic phenomena DELFT aerospace re-entry test vehicle", Proceedings of the 4th European Symposium on Aerothermodynamics for Allocations, ESA Capua, Italy.
  19. Stremel, P.K., McMullen, M.S. and Garcia, J.A. (2011), "Computational aerodynamic simulations of the Orion command module", AIAA Applied Aerodynamics Conference, 3503. https://doi.org/10.2514/6.2011-3503.
  20. Subramanian, S., Kurup, M.K.A., Kalimuthu R. and Raveendran, P.G. (1996), "An experimental investigation of hypersonic aerodynamic characteristics of re-entry bi-conic configurations at Mach 6", Vikram Sarabhai Space Centre, Trivandrum, India, VSSC/TR/186/96.
  21. Teramoto, S., Hiraki, K. and Fujii, K. (2001), "Numerical analysis of dynamic stability of a reentry capsule at transonic transonic speeds", AIAA J., 39(4), 646-653. https://doi.org/10.2511/2.1357.
  22. Truitt, R.W. (1959), Hypersonic Aerodynamic, Ronald Press, New York, USA.
  23. Viviani, A. and Pezzella, G. (2010a), "Computational flowfield analysis over a blunt-body re-entry vehicle", J. Spacecraft Rocket., 47(2), 258-270. https://doi.org/10.2514/1.40876.
  24. Viviani, A. and Pezzella, G. (2015b), Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles, Springer International Publishing A.G., Switzerland.
  25. Weiland, C. (2014), Aerodynamic Data of Space Vehicles, Springer-Verlag, Berlin Heidelberg, Germany.
  26. Wood, W.A., Gnoffo, P.A. and Rault, D.F.G. (1996), "Aerothermodynamic analysis of Commercial Experiment Transporter (COMET) re-entry capsule", 34th Aerospace Sciences Meeting and Exhibit, 316. https://doi.org/10.2514/6.1996-316.
  27. Zhenmiz, Z., Yunliancy, D., Yi, L. and Tieliang, Z. (2011), "Shape optimization design method for the conceptual design of reentry vehicles", Acta Astonautica Sincia, 32(11), 1971-1979.