DOI QR코드

DOI QR Code

Solar North-South Asymmetry and Hilbert Transform Analysis

  • Heon-Young Chang (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
  • Received : 2023.04.24
  • Accepted : 2023.05.19
  • Published : 2023.12.30

Abstract

Here, we investigated the observed sunspot areas with respect to latitudes using the Hilbert transform technique. Conventional study of the cyclic patterns of sunspots is based on the Lomb-Scargle periodogram, which only obtains the amplitude information. In comparison, our approach characterizes the amplitude as well as the phase of solar activity. We demonstrated the solar North-South asymmetry in the instantaneous amplitude by analyzing daily sunspot data set spanning from the solar cycles 11 to 24. Our findings confirm that the northern hemisphere is dominant in the solar cycles 14, 15, 16, 18, and 20. Unlike the amplitude, the North-South asymmetry in the period of solar activity could not be established. We have also found that the standard deviation as a measure of fluctuation in the phase derivative is minimum in the latitude band 10° < l < 20°, and the fluctuations obtained for latitudes above 30° are considerable.

Keywords

Acknowledgement

The author thanks the anonymous referees for critical comments and helpful suggestions which greatly improve the original version of the manuscript. This study was supported by a National Research Foundation of Korea Grant funded by the Korean government (NRF-2018R1D1A3B070421880) and Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (No. 2018R1A6A1A06024970).

References

  1. Babcock, H. W. 1961, ApJ, 133, 572 
  2. Bai, T., & Sturrock, P. A. 1991, Nature, 350, 141 
  3. Bai, T., & Sturrock, P. A. 1993, ApJ, 409, 476 
  4. Ballester, J. L., Oliver, R., & Carbonell, M. 2005, A&A, 431, L5 
  5. Berdyugina, S. V., & Usoskin, I. G. 2003, A&A, 405, 1121 
  6. Bracewell, R. N. 1953, Nature, 171, 649 
  7. Bumba, V., & Howard, R. 1969, Sol. Phys., 7, 28 
  8. Carbonell, M., Oliver, R., & Ballester, J. L. 1993, A&A, 274, 497 
  9. Carrington, R. C. 1860, MNRAS, 20, 71 
  10. Chang, H.-Y. 2008, NewA, 13, 195 
  11. Chang, H.-Y. 2011, NewA, 16, 456 
  12. Chang, H.-Y. 2012, NewA, 17, 247 
  13. Chang, H.-Y. 2022, JKAS, 55, 139 
  14. Cho, I.-H., Kwak, Y.-S., Chang, H.-Y., et al. 2011, J. Atmos. Sol.-Terr. Phys., 73, 1723 
  15. Cho, I.-H., Kwak, Y.-S., Marubashi, K., et al. 2012, Adv. Space Res., 50, 777 
  16. DeRosa, M. L., Brun, A. S., & Hoeksema, J. T. 2012, ApJ, 757, 96 
  17. Dicke, R. H. 1978, Nature, 276, 676 
  18. Dicke, R. H. 1988, Sol. Phys., 115, 171 
  19. Dikpati, M., & Charbonneau, P. 1999, ApJ, 518, 508 
  20. Duchlev, P. I. 2001, Sol. Phys., 199, 211 
  21. Duchlev, P. I., & Dermendjiev, V. N. 1996, Sol. Phys., 168, 205 
  22. Egorova, L. V., Vovk, V. Y., & Troshichev, O. A. 2000, J. Atmos. Sol.-Terr. Phys., 62, 955  https://doi.org/10.1016/S1364-6826(00)00080-8
  23. Georgieva, K., Kirov, B., Tonev, P., Guineva, V., & Atanasov, D. 2007, Adv. Space Res., 40, 1152 
  24. Gigolashvili, M. S., Japaridze, D. R., Mdzinarishvili, T. G., & Chargeishvili, B. B. 2005, Sol. Phys., 227, 27
  25. Gleissberg, W. 1971, Sol. Phys., 21, 240 
  26. Hale, G. E. 1908, ApJ, 28, 315 
  27. Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H. 1919, ApJ, 49, 153 
  28. Hansen, S. F., & Hansen, R. T. 1975, Sol. Phys., 44, 503  https://doi.org/10.1007/BF00153228
  29. Hathaway, D. H. 2011, Sol. Phys., 273, 221 
  30. Howard, R. F. 1991, Sol. Phys., 136, 251 
  31. Ichimoto, K., Kubota, J., Suzuki, M., Tohmura, I., & Kurokawa, H. 1985, Nature, 316, 422 
  32. Javaraiah, J. 2007, MNRAS, 377, L34 
  33. Javaraiah, J. 2022, Sol. Phys., 297, 33 
  34. Jeong, H.-J., Moon, Y.-J., Park, E., & Lee, H. 2020, ApJ, 903, L25 
  35. Joshi, B., & Joshi, A. 2004, Sol. Phys., 219, 343  https://doi.org/10.1023/B:SOLA.0000022977.95023.a7
  36. Joshi, B., & Pant, P. 2005, A&A, 431, 359 
  37. Kitiashvili, I. N. 2016, ApJ, 831, 15 
  38. Knaack, R., Stenflo, J. O., & Berdyugina, S. V. 2004, A&A, 418, L17 
  39. Krivova, N. A., & Solanki, S. K. 2002, A&A, 394, 701  https://doi.org/10.1051/0004-6361:20021063
  40. Leighton, R. B. 1969, ApJ, 156, 1 
  41. Li, K. J. 2010, MNRAS, 405, 1040 
  42. Li, K.-J., Liang, H.-F., & Feng, W. 2010, Res. Astron. Astrophys., 10, 1177 
  43. Li, K. J., Liang, H. F., Yun, H. S., & Gu, X. M. 2002, Sol. Phys., 205, 361 
  44. Lomb, N. R. 1976, Ap&SS, 39, 447 
  45. Maunder, E. W. 1890, MNRAS, 50, 361 
  46. Maunder, E. W. 1904, MNRAS, 64, 747 
  47. Mordvinov, A. V., Karak, B. B., Banerjee, D., et al. 2022, MNRAS, 510, 1331 
  48. Mursula, K., Getachew, T., & Virtanen, I. I. 2021, A&A, 645, A47 
  49. Nagovitsyn, Y. A., & Pevtsov, A. A. 2020, ApJ, 888, L26 
  50. Nandy, D., & Choudhuri, A. R. 2001, ApJ, 551, 576 
  51. Ossendrijver, M. 2003, A&A Rev., 11, 287 
  52. Parker, E. N. 1955, ApJ, 122, 293  https://doi.org/10.1086/146087
  53. Petrovay, K. 2010, Living Rev. Sol. Phys., 7, 6 
  54. Pevtsov, A. A., Berger, M. A., Nindos, A., Norton, A. A., & van Driel-Gesztelyi, L. 2014, Space Sci. Rev., 186, 285 
  55. Pishkalo, M. I. 2019, Sol. Phys., 294, 137 
  56. Pulkkinen, P. J., Brooke, J., Pelt, J., & Tuominen, I. 1999, A&A, 341, L43 
  57. Rieger, E., Share, G. H., Forrest, D. J., et al. 1984, Nature, 312, 623 
  58. Roy, J. R. 1977, Sol. Phys., 52, 53 
  59. Scargle, J. D. 1982, ApJ, 263, 835 
  60. Schwabe, M. 1843, Astron. Nachrichten, 20, 283 
  61. Shukuya, D., & Kusano, K. 2017, ApJ, 835, 84 
  62. Solanki, S. K., Wenzler, T., & Schmitt, D. 2008, A&A, 483, 623 
  63. Steenburgh, R. A., Biesecker, D. A., & Millward, G. H. 2014, Sol. Phys., 289, 675 
  64. Sun, X., Hoeksema, J. T., Liu, Y., & Zhao, J. 2015, ApJ, 798, 114 
  65. Swinson, D. B., Koyama, H., & Saito, T. 1986, Sol. Phys., 106, 35 
  66. Temmer, M., Rybak, J., Bendik, P., et al. 2006, A&A, 447, 735 
  67. Temmer, M., Veronig, A., & Hanslmeier, A. 2002, A&A, 390, 707  https://doi.org/10.1051/0004-6361:20020758
  68. Ternullo, M. 2007, Sol. Phys., 240, 153 
  69. Ternullo, M. 2010, Ap&SS, 328, 301 
  70. Tobias, S. M. 1997, A&A, 322, 1007 
  71. Tritakis, V. P., Mavromichalaki, H., & Petropoulos, B. 1988, Sol. Phys., 115, 367 
  72. Usoskin, I. G. 2017, Living Rev. Sol. Phys., 14, 3 
  73. Verma, V. K. 1987, Sol. Phys., 114, 185 
  74. Verma, V. K. 1993, ApJ, 403, 797 
  75. Vizoso, G., & Ballester, J. L. 1989, Sol. Phys., 119, 411 
  76. Waldmeier, M. 1971, Sol. Phys., 20, 332 
  77. Wang, Y. M., & Sheeley, N. R., J. 1989, Sol. Phys., 124, 81 
  78. Wang, Y. M., Sheeley, N. R., J., & Nash, A. G. 1991, ApJ, 383, 431 
  79. White, O. R., & Trotter, D. E. 1977, ApJS, 33, 391 
  80. Yi, W. 1992, JRASC, 86, 89 
  81. Yule, G. U. 1927, Philos. Trans. Royal Soc. London Ser. A, 226, 267 
  82. Zolotova, N. V., & Ponyavin, D. I. 2006, A&A, 449, L1 
  83. Zolotova, N. V., & Ponyavin, D. I. 2007, A&A, 470, L17