DOI QR코드

DOI QR Code

Influence of clamped-clamped boundary conditions on the mechanical stress, strain and deformation analyses of cylindrical sport equipment

  • Yuhao Yang (Guangzhou Sport University) ;
  • Mohammad Arefi (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan)
  • Received : 2022.07.10
  • Accepted : 2023.09.26
  • Published : 2023.12.10

Abstract

The higher order shear deformable model and an exact analytical method is used for analytical bending analysis of a cylindrical shell subjected to mechanical loads, in this work. The shell is modelled using sinusoidal bivariate shear strain theory, and the static governing equations are derived using changes in virtual work. The eigenvalue-eigenvector method is used to exactly solve the governing equations for a constrained cylindrical shell The proposed kinematic relation decomposes the radial displacement into bending, shearing and stretching functions. The main advantage of the method presented in this work is the study of the effect of clamping constraints on the local stresses at the ends. Stress, strain, and deformation analysis of shells through thickness and length.

Keywords

References

  1. Abbas, S.Z., Waqas, M., Thaljaoui, A., Zubair, M., Riahi, A., Chu, Y.M. and Khan, W.A. (2022), "Modeling and analysis of unsteady second-grade nanofluid flow subject to mixed convection and thermal radiation", Soft Comput., 26(3), 1033-1042. https://doi.org/10.1007/s00500-021-06575-7.
  2. Adnan, U.K., Ahmed, N. and Mohyud-Din, S.T. (2020), "γ-nanofluid thermal transport between parallel plates suspended by micro-cantilever sensor by incorporating the effective Prandtl model: applications to biological and medical sciences", Molecules, 25(8), 1777. https://doi.org/10.3390/molecules25081777.
  3. Akbari Alashti, R. and Khorsand, M. (2011), "Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method", Int. J. Pres. Ves. Piping, 88(5-7), 167-180. https://doi.org/10.1016/j.ijpvp.2011.06.001.
  4. Arefi, M. and Civalek, O. (2020), "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civil. Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2.
  5. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953.
  6. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433.
  7. Arefi, M. and Rahimi, G.H. (2012a), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127.
  8. Arefi, M. and Rahimi, G.H. (2012b), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5
  9. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart. Struct. Syst., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001.
  10. Arefi, M., Kiani Moghaddam, S., Mohammad-Rezaei Bidgoli, E., Kiani, M. and Civalek, O. (2021), "Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermomechanical loads", Compos. Struct., 255, 12924. https://doi.org/10.1016/j.compstruct.2020.112924
  11. Arefi, M. and Rahimi, G.H. (2012c), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273.
  12. Bai, X., Shi, H., Zhang, K., Zhang, X. and Wu, Y. (2022), "Effect of the fit clearance between ceramic outer ring and steel pedestal on the sound radiation of full ceramic ball bearing system", J. Sound. Vib., 529, 116967. https://doi.org/10.1016/j.jsv.2022.116967
  13. Bai, X., Zhang, Z., Shi, H., Luo, Z. and Li, T. (2023). "Identification of subsurface mesoscale crack in full ceramic ball bearings based on strain energy theory", Appl. Sci., 13(13), 7783. doi: 10.3390/app13137783.
  14. Brooks, G.N. (1987), "Elastic-plastic analysis of pressurized cylindrical shells", J. Appl. Mech., 54(3), 597-603. https://doi.org/10.1115/1.3173075.
  15. Chen, Y. Jin, G. and Liu, Z. (2013), "Free vibration analysis of circular cylindrical shell with non-uniform elastic boundary constraints", Int. J. Mech. Sci., 74, 120-132. https://doi.org/10.1016/j.ijmecsci.2013.05.006.
  16. Chu, Y.M., Hashmi, M.S., Khan, N. and Khan, S.U. (2020b), "Thermophoretic particles deposition features in thermally developed flow of Maxwell fluid between two infinite stretched disks", J. Mater. Res. Tech.-JMR&T, 9(6), 12889-12898. https://doi.org/10.1016/j.jmrt.2020.09.011
  17. Chu, Y.M., Shah, F., Khan, M.I. and Kadry, S. (2020a), "Cattaneo-Christov double diffusions (CCDD) in entropy optimized magne tized second grade nanofluid with variable thermal conductivity and mass diffusivity", J. Mater. Res. Tech.-JMR&T, 9(6), 13977-13987. https://doi.org/10.1016/j.jmrt.2020.09.101.
  18. Chung, J.D., Ramzan, M. and Gul, H. (2021), "Partially ionized hybrid nanofluid flow with thermal stratification", J. Mater. Res. Tech.-JMR&T, 11, 1457-1468. https://doi.org/10.1016/j.jmrt.2021.01.095.
  19. Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.7069.
  20. Elsamak, G. and Fayed, S. (2021), "Flexural strengthening of RC beams using externally bonded aluminum plates: An experimental and numerical study", Adv. Conc. Construct., 11(6), 481-492. https://doi.org/10.12989/acc.2021.11.6.481.
  21. Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2019), "Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation", Steel. Compos. Struct., 32(4), 509-519. https://doi.org/10.12989/scs.2019.32.4.509.
  22. Fu, Z.H., Yang, B.J., Shan, M.L., Li, T., Zhu, Z.Y., Ma, C.P. and Gao, W. (2020), "Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones", Corros. Sci., 164, 108337. https://doi.org/10.1016/j.corsci.2019.108337.
  23. Ge-JiLe, H., Waqas, H., Khan, S.U., Khan, M.I., Farooq, S. and Hussain, S. (2021), "Three-dimensional radiative bioconvective flow of a Sisko nanofluid with motile microorganisms", Coatings, 11(3), 335. https://doi.org/10.3390/coatings11030335
  24. Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2013), "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials", Compos. Part B: Eng., 45(1), 388-396. https://doi.org/10.1016/j.compositesb.2012.09.043.
  25. Guo, K., Gou, G., Lv, H. and Shan, M. (2022), "Jointing of CFRP/5083 Aluminum Alloy by Induction Brazing: Processing, Connecting Mechanism, and Fatigue Performance", Coatings, 12(10), 1559. https://doi.org/10.3390/coatings12101559.
  26. Ha, F., Kadry, S., Chu, Y.M., Khan, M. and Kha, M.I. (2020), "Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with ac tivation energy", J. Mater. Res. Tech.-JMR&T, 9(5), 10468-10477. https://doi.org/10.1016/j.jmrt.2020.07.025.
  27. Hao, R., Lu, Z., Ding, H. and Chen, L. (2022), "Orthogonal six-DOFs vibration isolation with tunable high-static-low-dynamic stiffness: Experiment and analysis", Int. J. Mech. Sci., 222, 107237. https://doi.org/10.1016/j.ijmecsci.2022.107237.
  28. Haywood, J.H. (1958), "Response of an elastic cylindrical shell to a pressure pulse", Quart. J. Mech. Appl. Math., 11(2), 129-141. https://doi.org/10.1093/qjmam/11.2.129
  29. Hu, G.J., Khurram, J., Sami, U.K., Khan, S.U., Raza, M., Ijaz Khan, M. and Qayyum, S. (2021), "Double diffusive convection and Hall effect in creeping flow of viscous nanofluid through a convergent microchannel: A biotechnological applications", Comput. Meth. Biomech. Biomed. Eng., 24(12), 1326-1343. https://doi.org/10.1080/10255842.2021.1888373.
  30. Huang, X., Yang, J. and Yang, Z. (2021), "Thermo-elastic analysis of functionally graded graphene nanoplatelets (GPLs) reinforced closed cylindrical shells", Appl. Math. Model., 97, 754-770. https://doi.org/10.1016/j.apm.2021.04.027.
  31. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Archiv. Civ. Mech. Eng., 21, 139. https://doi.org/10.1007/s43452-021-00291-7.
  32. Ibrahim, M., Saeed, T. and Riahi Bani, F. (2021), "Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field", Powder Tech., 384, 522-541. https://doi.org/10.1016/j.powtec.2021.01.077.
  33. Ikram, M.D., Imran, M.A., Chu, YM. and Akgul, A. (2022), "MHD flow of a Newtonian fluid in symmetric channel with ABC fractional model containing hybrid nanoparticles", Comb. Chem. & High Through. Scr., 25(7), 2087-1102. https://doi.org/10.2174/1386207324666210412122544.
  34. Jin, G., Ye, T., Chen, Y., Su, Z. and Yan, Y. (2013), "An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions", Compos. Struct., 106, 114-127. https://doi.org/10.1016/j.compstruct.2013.06.002.
  35. Karam, G.N. and Gibson, L.J. (1995), "Elastic buckling of cylindrical shells with elastic cores-II. Experiments", Int. J. Solids. Struct., 32(8-9), 1285-1306. https://doi.org/10.1016/0020-7683(94)00148-P.
  36. Karam, G.N. and Gibson, L.J. (1995), "Elastic buckling of cylindrical shells with elastic cores-I. Analysis", Int. J. Solids. Struct., 32(8-9), 1259-1283. https://doi.org/10.1016/0020-7683(94)00147-O
  37. Khan, U., Zaib, A., Waini, I., Ishak, A., Sherif, E.S.M., Xia, W.F. and Muhammad, N. (2022), "Impact of Smoluchowski temperature and Maxwell velocity slip conditions on axisymmetric rotated flow of hybrid nanofluid past a porous moving rotating disk", Nanomaterials, 12(2), 276. https://doi.org/10.3390/nano12020276.
  38. Khdeir, A.A., Reddy, J.N. and Frederick, D. (1989), "A study of bending, vibration and buckling of cross-ply circular cylindrical shells with various shell theories". Int. J. Eng. Sci., 27(11), 1337-1351. https://doi.org/10.1016/0020-7225(89)90058-X.
  39. Khoshgoftar, M., Rahimi, M.J. and Arefi, G.H. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Com., 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001.
  40. Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Tounsi, A. and Hussain, M. (2021), "An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core", Steel. Compos. Struct., 41(2), 167-191. https://doi.org/10.12989/scs.2021.41.2.167.
  41. Kushnir, R.М., Zhydyk, U.V. and Flyachok, V.М. (2021), "Thermoelastic analysis of functionally graded cylindrical shells", J. Math. Sci., 254, 46-58. https://doi.org/10.1007/s10958-021-05287-5,
  42. Li, J., Chen, M. and Li, Z. (2022), "Improved soil-structure interaction model considering time-lag effect", Comput. Geotech., 148, 104835. https://doi.org/10.1016/j.compgeo.2022.104835.
  43. Li, L.Y., Zhang, Y.B., Cui, X., Said, Z., Sharma, S., Liu, M.Z., Gao, T., Zhou, Z.M., Wang, X.M. and Li, C.H. (2023), "Mechanical behavior and modeling of grinding force: A comparative analysis", J. Manuf. Proc., 102, 921-954. https://doi.org/10.1016/j.jmapro.2023.07.074.
  44. Li, Q.M., Dong, Q. and Zheng, J.Y. (2008), "Strain growth of the in-plane response in an elastic cylindrical shell", Int. J. Impact. Eng., 35(10), 1130-1153. https://doi.org/10.1016/j.ijimpeng.2008.01.007.
  45. Liu, G., Wu, S., Shahsavari, D., Karami, B. and Tounsi, A. (2022), "Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation", Eur. J. Mech. A/Solids, 95, 104649. https://doi.org/10.1016/j.euromechsol.2022.104649.
  46. Loy, C.T. and Lam, K.Y. (1999), "Vibration of thick cylindrical shells on the basis of three-dimensional theory of elasticity", J. Sound. Vib., 226(4), 719-737. https://doi.org/10.1006/jsvi.1999.2310.
  47. Lu, H., Zhu, Y., Yin, M., Yin, G. and Xie, L. (2022), "Multimodal fusion convolutional neural network with cross-attention mechanism for internal defect detection of magnetic tile", IEEE. Access., 10, 60876-60886. https://doi.org/10.1109/ACCESS.2022.3180725.
  48. Lund, L.A., Omar, Z., Dero, S., Chu, Y. and Khan, I. (2021), "Temporal stability analysis of magnetized hybrid nanofluid propagating through an unsteady shrinking sheet: partial slip conditions", Comput., Mater. Continua., 66(2), 1963-1975. https://doi.org/10.32604/cmc.2020.011976.
  49. Luo, C., Wang, L., Xie, Y. and Chen, B. (2022), "A New conjugate gradient method for moving force identification of vehicle- bridge system", J. Vib. Eng. Tech., https://doi.org/10.1007/s42417-022-00824-1.
  50. Ma, J.F., Chen, W.Y., Zhao, L. and Zhao, D.H. (2008), "Elastic buckling of bionic cylindrical shells based on bamboo", J. Bion. Eng., 5(3), 231-238. https://doi.org/10.1016/S1672-6529(08)60029-3
  51. Ma, X., Jin, G., Shi, S., Ye, T. and Liu, Z. (2017), "An analytical method for vibration analysis of cylindrical shells coupled with annular plate under general elastic boundary and coupling conditions", J. Vib. Control, 23(2), 305-328. https://doi.org/10.1177/1077546315576301.
  52. Maouedj, R., Menni, Y., Inc, M., Chu, Y.M., Ameur, H. and Lorenzini, G. (2021), "Simulating the turbulent hydrothermal behavior of oil/MWCNT nanofluid in a solar channel heat exchanger equipped with vortex generators", Comput. Model. . Eng. Sci., 126(3), 855-889. https://doi.org/10.32604/cmes.2021.014524.
  53. Mehditabar, A., Rahimi, G.H. and Tarahhomi, M.H. (2018), "Thermo-elastic analysis of a functionally graded piezoelectric rotating hollow cylindrical shell subjected to dynamic loads", Mech. Adv. Mater. Struct., 25(12), 1068-1079. https://doi.org/10.1080/15376494.2017.1329466.
  54. Mercan, K. and Civalek, O. (2019), "Geometric mapping for nonrectangular plates with micro/nano or macro scaled under different effects", Int. J. Eng. Appl. Sci., 11(3), 445-454. https://doi.org/10.24107/ijeas.641211.
  55. Nazeer, M., Hussain, F., Ahmad, M.O., Saeed, S., Ijaz Khan, M., Kadry, S. and Chu, Y.M. (2021), "Multi-phase flow of Jeffrey Fluid bounded within magnetized horizontal surface", Surf. Interf., 22, 100846. https://doi.org/10.1016/j.surfin.2020.100846.
  56. Nazeer, M., Ijaz Khan, M. and Chu, Y.M. (2022), "Mathematical modeling of multiphase flows of third-grade fluid with lubrication effects through an inclined channel: analytical treatment", J. Disp. Sci. Tech., 43(10), 1555-1567. https://doi.org/10.1080/01932691.2021.1877557.
  57. Nazeer, M., Khan, M.I., Chu, Y.M., Kadry, S. and Eid, M.R. (2022), "Mathematical modeling of multiphase flows of third-grade fluid with lubrication effects through an inclined channel: analytical treatment", J. Disp. Sci. Tech., 43(10), 1555-1567. https://doi.org/10.1080/01932691.2021.1877557.
  58. Nwojia, C.U. and Ani, D.G. (2022), "Second-order models for the bending analysis of thin and moderately thick circular cylindrical shells", Lat. Am. J. Solids. Struct., 19(3).
  59. Qiao, W., Fu, Z., Du, M., Wei, N. and Liu, E. (2023), "Seasonal peak load prediction of underground gas storage using a novel two-stage model combining improved complete ensemble empirical mode decomposition and long short-term memory with a sparrow search algorithm", Energy, 274, 127376. https://doi.org/10.1016/j.energy.2023.127376.
  60. Rachid, A., Ouinas, D., Lousdad, A., Zaoui, F.Z., Achour, B., Gasmi, H., Butt, T.A. and Tounsi, A. (2022), "Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs", Thin. Walled. Struct., 172, 108783. https://doi.org/10.1016/j.tws.2021.108783.
  61. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech. (Eng. Ed.), 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6.
  62. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875.
  63. Ramesh, K., Khan, S.U., Jameel, M., Khan, M.I., Chu, Y.M. and Kadry, S. (2020), "Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy", Surf. Interf., 21, 100749. https://doi.org/10.1016/j.surfin.2020.100749.
  64. Rasool, G., Shafiq, A., Chu, Y.M., Bhutta, M.S. and Ali, A. (2022), "Optimal homotopic exploration of features of Cattaneo-Christov model in second grade nanofluid flow via Darcy-Forchheimer medium subject to viscous dissipation and thermal radiation", Comb. Chem. & High Through. Scr., 25(14), 2485-2497. https://doi.org/10.2174/1386207324666210903144447.
  65. Ren, C., Yu, J., Liu, S., Yao, W., Zhu, Y. and Liu, X. (2022), "A plastic strain-induced damage model of porous rock suitable for different stress paths", Rock. Mech. Rock. Eng., 55(4), 1887-1906. https://doi.org/10.1007/s00603-022-02775-1.
  66. Safarpour, M., Rahimi, A.R. and Alibeigloo, A. (2020), "Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM", Mech. Based. Des. Struc., 48(4), 496-524. https://doi.org/10.1080/15397734.2019.1646137.
  67. Santos, H., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2009), "A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials", Compos. Struct., 91(4), 427-432. https://doi.org/10.1016/j.compstruct.2008.03.004.
  68. Shah, A.G., Mahmood, T., Naeem, M.N., Iqbal, Z. and Arshad, S.H. (2010), "Vibrations of functionally graded cylindrical shells based on elastic foundations", Acta. Mech., 211, 293-307. https://doi.org/10.1007/s00707-009-0225-9.
  69. Shi, H., Song, Z., Bai, X., Hu, Y., Li, T. and Zhang, K. (2023), "A novel digital twin model for dynamical updating and real-time mapping of local defect extension in rolling bearings", Mech. Syst. Signal. Proc., 193, 110255. https://doi.org/10.1016/j.ymssp.2023.110255
  70. Shi, J., Zhao, B., He, T., Tu, L., Lu, X. and Xu, H. (2023), "Tribology and dynamic characteristics of textured journal-thrust coupled bearing considering thermal and pressure coupled effects", Trib. Int., 180, 108292. https://doi.org/10.1016/j.triboint.2023.108292.
  71. Sidhoum, I.A., Boutchicha, D., Benyoucef, S. and Tounsi, A. (2018), "A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates", Smart. Struct. Syst., 22(3), 303-314. https://doi.org/10.12989/sss.2018.22.3.303.
  72. Soedel, W. (2004), "Vibrations of shells and plates. Marcel Dekker", Inc (New York).
  73. Sofiyev, A.H. and Kuruoglu, N. (2013), "Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium", Compos. Part B: Eng., 45(1), 1133-1142. https://doi.org/10.1016/j.compositesb.2012.09.046
  74. Soldatos, K.P. (1994), "Review of three dimensional dynamic analyses of circular cylinders and cylindrical shells", Appl. Mech. Rev., 47(10), 501-516. https://doi.org/10.1115/1.3111064.
  75. Sun, T., Peng, L., Ji, X., Li, X. and Rodellar, J. (2023a), "A half-cycle negative-stiffness damping model and device development", Struct. Control. Health. Monit., 2023, 4680105. https://doi.org/10.1155/2023/4680105.
  76. Sun, W., Wang, H. and Qu, R. (2023b), "A novel data generation and quantitative characterization method of motor static eccentricity with adversarial network", IEEE Trans. Power Elect., 38(7), 8027-8032. https://doi.org/10.1109/TPEL.2023.3267883.
  77. Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan S.U. and Al-Zahrani, M.M. (2022), "The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT", Steel. Compos. Struct., 42(4), 501-511. https://doi.org/10.12989/scs.2022.42.4.501.
  78. Tian, L., Jin, B. and Li, L. (2023b), "Axial compressive mechanical behaviors of a double-layer member", J. Struct. Eng., 149(8), 4023110. https://doi.org/10.1061/JSENDH.STENG12175.
  79. Tian, L., Li, M., Li, L., Li, D. and Bai, C. (2023a), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin. Walled. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219.
  80. Waqas, M., Ijaz Khan, M., Asghar, Z., Kadry, S., Chu, Y.M. and Khan, W.A. (2020), "Interaction of heat generation in nonlinear mixed/forced convective flow of Williamson fluid flow subject to generalized Fourier's and Fick's concept", J. Mater. Res. Tech.-JMR&T, 9(5), 11080-11086. https://doi.org/10.1016/j.jmrt.2020.07.068.
  81. Wu, Z., Huang, B., Fan, J. and Chen, H. (2023). "Homotopy based stochastic finite element model updating with correlated static measurement data", Measurement, 210, 112512. https://doi.org/10.1016/j.measurement.2023.112512
  82. Xuyuan, S., Tienan, C., Peixin, G. and Qingkai, H. (2020), "Vibration and damping analysis of cylindrical shell treated with viscoelastic damping materials under elastic boundary conditions via a unified Rayleigh-Ritz method", Int. J. Mech. Sci., 165, 105158. https://doi.org/10.1016/j.ijmecsci.2019.105158.
  83. Yang, K., Qin, N., Yu, H., Zhou, C., Deng, H., Tian, W. and Guan, J. (2022), "Correlating multi-scale structure characteristics to mechanical behavior of Caprinae horn sheaths", J. Mater. Res. Tech., 21, 2191-2202. https://doi.org/10.1016/j.jmrt.2022.10.044.
  84. Yu, H., Zhang, J., Fang, M., Ma, T., Wang, B., Zhang, Z. and Yang, K. (2023), "Bio-inspired strip-shaped composite composed of glass fabric and waste selvedge from A. pernyi silk for lightweight and high-impact applications", Compos. Part A: Appl. Sci. Manufact., 174, 107715. https://doi.org/10.1016/j.compositesa.2023.107715.
  85. Zhang, L., Xiong, D., Su, Z., Li, J., Yin, L., Yao, Z. and Zhang, H. (2022), "Molecular dynamics simulation and experimental study of tin growth in SAC lead-free microsolder joints under thermomechanical-electrical coupling", Mater. Today. Com., 33, 104301. https://doi.org/10.1016/j.mtcomm.2022.104301.
  86. Zhang, Z., Sui, M., Li, C., Zhou, Z., Liu, B., Chen, Y., Said, Z., Debnath, S. and Sharma, S. (2021), "Residual stress of MoS2 nano-lubricant grinding cemented carbide", Int. J. Adv. Manuf. Tech., https://doi.org/10.1007/s00170-022-08660-z.