Acknowledgement
This work was supported by a 2-Year Research Grant of Pusan National University.
References
- Amiri, N., Shaterabadi, M., Kashyzadeh, K.R. and Chizari, M. (2021), "A comprehensive review on design, monitoring, and failure in fixed offshore platforms", J. Mar. Sci. Eng., 9(12). https://doi.org/10.3390/jmse9121349.
- Bashetty, S. and Ozcelik, S. (2021), "Review on dynamics of offshore floating wind turbine platforms", Energies, 14(19). https://doi.org/10.3390/en14196026.
- Bosnar, D., Kozmar, H., Pospisil, S. and Machacek, M. (2021), "Thrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles". Wind Struct, 32(5), 471-485. https://doi.org/10.12989/was.2021.32.5.471.
- Bozdogan, K.B. and Maleki, F.K. (2021), "Application of differential transformation method for free vibration analysis of wind turbine", Wind Struct, 32(1), 11-17. https://doi.org/10.12989/was.2021.32.1.11.
- Cho, J.R., Kim, B.S., Choi, E.H., Lee, S.B. and Lim, O.K. (2014), "Semi-analytical numerical approach for the structural dynamic response analysis of spar floating substructure for offshore wind turbine", Struct Eng Mech, 52(3), 633-646. https://doi.org/10.12989/sem.2014.52.3.633.
- Choi, E., Han, C., Kim, H. and Park, S. (2014), "Optimal design of floating substructures for spar-type wind turbine systems", Wind Struct, 18(3), 253-265. https://doi.org/10.12989/was.2014.18.3.253.
- Du, S.J., Zhou, J.W. and Li, F.M. (2022), "Aeroelastic deformation and load reduction of bending-torsion coupled wind turbine blades", Wind Struct, 35(5), 353-368. https://doi.org/10.12989/was.2022.35.5.353.
- Ha, K., Kim, J. B., Yu, Y. and Seo, H.S. (2021), "Structural Modeling and Failure Assessment of Spar-Type Substructure for 5 MW Floating Offshore Wind Turbine under Extreme Conditions in the East Sea", Energies, 14(20). https://doi.org/10.3390/en14206571.
- Hong, S.P. and Cho, J.R. (2017), "Natural frequencies and response amplitude operators of scale model of spar-type floating offshore wind turbine", Struct. Eng. Mech., 61(6), 785-794. https://doi.org/10.12989/sem.2017.61.6.785.
- Ji, X.D., Zou, T., Bai, X., Niu, X.B. and Tao, L.B. (2023), "Fatigue assessment of flange connections in offshore wind turbines under the initial flatness divergence", Front Energy Res, 11. https://doi.org/10.3389/fenrg.2023.1127957.
- Jiang, Z.H., Wen, B.R., Chen, G., Xiao, L.F., Li, J., Peng, Z.K. and Tian, X.L. (2021), "Feasibility studies of a novel spar-type floating wind turbine for moderate water depths: Hydrodynamic perspective with model test", Ocean Eng., 233. https://doi.org/10.1016/j.oceaneng.2021.109070.
- Khakimzyanov, G. and Dutykh, D. (2018), "Numerical modelling of surface water wave interaction with a moving wall", Commun. Comput. Phys., 23(5), 1289-1354. https://doi.org/10.4208/cicp.OA-2017-0110.
- Leroy, V., Delacroix, S., Merrien, A., Bachynski-Polic, E.E. and Gilloteaux, J.C. (2022), "Experimental investigation of the hydro-elastic response of a spar-type floating offshore wind turbine", Ocean Eng., 255. https://doi.org/10.1016/j.oceaneng.2022.111430.
- Lochan, S., Mehmanparast, A. and Wintle, J. (2019), "A review of fatigue performance of bolted connections in offshore wind turbines", Procedia Struct. Inte., 17, 276-283. https://doi.org/10.1016/j.prostr.2019.08.037.
- Lopez, J.P., Hangan, H. and El Damatty, A. (2022), "Experimental study of the loads induced by a large-scale tornado simulation on a HAWT model", Wind Struct, 34(3), 303-312. https://doi.org/10.12989/was.2022.34.3.303.
- Moghaddam, B.T., Hamedany, A.M., Taylor, J., Mehmanparast, A., Brennan, F., Davies, C.M. and Nikbin, K. (2020), "Structural integrity assessment of floating offshore wind turbine support structures", Ocean Eng., 208. https://doi.org/10.1016/j.oceaneng.2020.107487.
- Nguyen, H., Chen, L. and Basu, B. (2023), "On the influence of large amplitude nonlinear regular waves on the structural response of spar-type floating offshore wind turbines", Ocean Eng., 269. https://doi.org/10.1016/j.oceaneng.2022.113448.
- Park, H.J., Oh, M.K., Park, S. and Yoo, J. (2022), "Structural design methodology for lightweight supporting structure of a multi-rotor wind turbine", Wind Struct, 34(3), 291-301. https://doi.org/10.12989/was.2022.34.3.291.
- Qu, X.Q., Li, Y., Tang, Y.G., Hu, Z.Q., Zhang, P. and Yin, T.C. (2020), "Dynamic response of spar-type floating offshore wind turbine in freak wave considering the wave-current interaction effect", Appl. Ocean Res., 100. https://doi.org/10.1016/j.apor.2020.102178.
- Rahmdel, S., Wang, B., Han, C., Kim, K. and Park, S. (2016), "A parametric study of spar-type floating offshore wind turbines (FOWTs) by numerical and experimental investigations", Ships Offshore Struct., 11(8), 818-832. https://doi.org/10.1080/17445302.2015.1073865.
- Rajeswari, K. and Nallayarasu, S. (2022), "Experimental and numerical investigation on the suitability of semi-submersible floaters to support vertical axis wind turbine", Ships Offshore Struct., 17(8), 1743-1754. https://doi.org/10.1080/17445302.2021.1938800.
- Sajeer, M.M. and Chakraborty, A. (2021), "Long-term fatigue reliability enhancement of horizontal axis wind turbine blade", Wind Struct., 33(2), 169-185. https://doi.org/10.12989/was.2021.33.2.169.
- Shabakhty, N. and Khansari, A. (2019), "Fatigue analysis of a jacket structure to linear and weakly nonlinear random waves", J. Offshore Mech. Arctic Eng. Transact. Asme, 141(6). https://doi.org/10.1115/1.4042946.
- Shang, Y., Cen, S. and Li, C.F. (2016), "A 4-node quadrilateral flat shell element formulated by the shape-free HDF plate and HSF membrane elements", Eng Computat., 33(3), 713-741. https://doi.org/10.1108/Ec-04-2015-0102.
- Thome, M., El Moctar, O. and Schellin, T. E. (2023), "Assessment of Hydrodynamic Loads on an Offshore Monopile Structure Considering Hydroelasticity Effects", J. Mar. Sci. Eng., 11(2). https://doi.org/10.3390/jmse11020350.
- Wang, B., SajadRahmdel, Han, C., Jung, S. and Park, S. (2014), "Hydrodynamic response of alternative floating substructures for spar-type offshore wind turbines", Wind Struct., 18(3), 267-279. https://doi.org/DOI10.12989/was.2014.18.3.267.
- Ward, J.C., Goupee, A.J., Viselli, A.M. and Dagher, H.J. (2021), "Experimental investigation into the dynamic behavior of a floating offshore wind turbine stabilized via a suspended counterweight", Ocean Eng., 228. https://doi.org/10.1016/j.oceaneng.2021.108906.
- Wedel-Heinen, J., Ronold, K.O. and Madsen, P.H. (2007), "Revision of DNV design standard for offshore wind turbine structures", Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, 5, 433-439.
- You, Y.S., Song, K.Y. and Sun, M.Y. (2022), "Variable natural frequency damper for minimizing response of offshore wind turbine: Principle verification through analysis of controllable natural frequencies", J. Mar. Sci. Eng., 10(7). https://doi.org/10.3390/jmse10070983.
- Zhang, J.P., Wang, M.Q., Gong, Z. and Shi, F.F. (2020), "Dynamic analysis of offshore wind turbines", Wind Struct., 31(4), 373-380. https://doi.org/10.12989/was.2020.31.4.373.
- Zhang, R.F., Cao, Y.R. and Dai, K.S. (2021), "Response control of wind turbines with ungrounded tuned mass inerter system (TMIS) under wind loads", Wind Struct., 32(6), 573-586. https://doi.org/10.12989/was.2021.32.6.573.