DOI QR코드

DOI QR Code

Structural integrity of a 2.5-MW spar-type floating offshore wind turbine under extreme environmental conditions

  • Hanjong Kim (School of Mechanical Engineering, Pusan National University) ;
  • Jaehoon Lee (Korea Marine Equipment Research Institute) ;
  • Changwan Han (Korea Aerospace Industries) ;
  • Seonghun Park (School of Mechanical Engineering, Pusan National University)
  • Received : 2023.04.10
  • Accepted : 2023.09.21
  • Published : 2023.12.25

Abstract

The main objective of this study was to establish design guidelines for three key design variables (spar thickness, spar diameter, and total draft) by examining their impact on the stress distribution and resonant frequency of a 2.5-MW spar-type floating offshore wind turbine substructure under extreme marine conditions, such as during Typhoon Bolaven. The current findings revealed that the substructure experienced maximum stress at wave frequencies of either 0.199 Hz or 0.294 Hz, consistent with previously reported experimental findings. These results indicated that the novel simulation method proposed in this study, which simultaneously combines hydrodynamic diffraction analysis, computational dynamics analysis, and structural analysis, was successfully validated. It also demonstrated that our proposed simulation method precisely quantified the stress distribution of the substructure. The novel findings, which reveal that the maximum stress of the substructure increases with an increase in total draft and a decrease in spar thickness and spar diameter, offer valuable insights for optimizing the design of spar-type floating offshore wind turbine substructures operating in various harsh marine environments.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. Amiri, N., Shaterabadi, M., Kashyzadeh, K.R. and Chizari, M. (2021), "A comprehensive review on design, monitoring, and failure in fixed offshore platforms", J. Mar. Sci. Eng., 9(12). https://doi.org/10.3390/jmse9121349.
  2. Bashetty, S. and Ozcelik, S. (2021), "Review on dynamics of offshore floating wind turbine platforms", Energies, 14(19). https://doi.org/10.3390/en14196026.
  3. Bosnar, D., Kozmar, H., Pospisil, S. and Machacek, M. (2021), "Thrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles". Wind Struct, 32(5), 471-485. https://doi.org/10.12989/was.2021.32.5.471.
  4. Bozdogan, K.B. and Maleki, F.K. (2021), "Application of differential transformation method for free vibration analysis of wind turbine", Wind Struct, 32(1), 11-17. https://doi.org/10.12989/was.2021.32.1.11.
  5. Cho, J.R., Kim, B.S., Choi, E.H., Lee, S.B. and Lim, O.K. (2014), "Semi-analytical numerical approach for the structural dynamic response analysis of spar floating substructure for offshore wind turbine", Struct Eng Mech, 52(3), 633-646. https://doi.org/10.12989/sem.2014.52.3.633.
  6. Choi, E., Han, C., Kim, H. and Park, S. (2014), "Optimal design of floating substructures for spar-type wind turbine systems", Wind Struct, 18(3), 253-265. https://doi.org/10.12989/was.2014.18.3.253.
  7. Du, S.J., Zhou, J.W. and Li, F.M. (2022), "Aeroelastic deformation and load reduction of bending-torsion coupled wind turbine blades", Wind Struct, 35(5), 353-368. https://doi.org/10.12989/was.2022.35.5.353.
  8. Ha, K., Kim, J. B., Yu, Y. and Seo, H.S. (2021), "Structural Modeling and Failure Assessment of Spar-Type Substructure for 5 MW Floating Offshore Wind Turbine under Extreme Conditions in the East Sea", Energies, 14(20). https://doi.org/10.3390/en14206571.
  9. Hong, S.P. and Cho, J.R. (2017), "Natural frequencies and response amplitude operators of scale model of spar-type floating offshore wind turbine", Struct. Eng. Mech., 61(6), 785-794. https://doi.org/10.12989/sem.2017.61.6.785.
  10. Ji, X.D., Zou, T., Bai, X., Niu, X.B. and Tao, L.B. (2023), "Fatigue assessment of flange connections in offshore wind turbines under the initial flatness divergence", Front Energy Res, 11. https://doi.org/10.3389/fenrg.2023.1127957.
  11. Jiang, Z.H., Wen, B.R., Chen, G., Xiao, L.F., Li, J., Peng, Z.K. and Tian, X.L. (2021), "Feasibility studies of a novel spar-type floating wind turbine for moderate water depths: Hydrodynamic perspective with model test", Ocean Eng., 233. https://doi.org/10.1016/j.oceaneng.2021.109070.
  12. Khakimzyanov, G. and Dutykh, D. (2018), "Numerical modelling of surface water wave interaction with a moving wall", Commun. Comput. Phys., 23(5), 1289-1354. https://doi.org/10.4208/cicp.OA-2017-0110.
  13. Leroy, V., Delacroix, S., Merrien, A., Bachynski-Polic, E.E. and Gilloteaux, J.C. (2022), "Experimental investigation of the hydro-elastic response of a spar-type floating offshore wind turbine", Ocean Eng., 255. https://doi.org/10.1016/j.oceaneng.2022.111430.
  14. Lochan, S., Mehmanparast, A. and Wintle, J. (2019), "A review of fatigue performance of bolted connections in offshore wind turbines", Procedia Struct. Inte., 17, 276-283. https://doi.org/10.1016/j.prostr.2019.08.037.
  15. Lopez, J.P., Hangan, H. and El Damatty, A. (2022), "Experimental study of the loads induced by a large-scale tornado simulation on a HAWT model", Wind Struct, 34(3), 303-312. https://doi.org/10.12989/was.2022.34.3.303.
  16. Moghaddam, B.T., Hamedany, A.M., Taylor, J., Mehmanparast, A., Brennan, F., Davies, C.M. and Nikbin, K. (2020), "Structural integrity assessment of floating offshore wind turbine support structures", Ocean Eng., 208. https://doi.org/10.1016/j.oceaneng.2020.107487.
  17. Nguyen, H., Chen, L. and Basu, B. (2023), "On the influence of large amplitude nonlinear regular waves on the structural response of spar-type floating offshore wind turbines", Ocean Eng., 269. https://doi.org/10.1016/j.oceaneng.2022.113448.
  18. Park, H.J., Oh, M.K., Park, S. and Yoo, J. (2022), "Structural design methodology for lightweight supporting structure of a multi-rotor wind turbine", Wind Struct, 34(3), 291-301. https://doi.org/10.12989/was.2022.34.3.291.
  19. Qu, X.Q., Li, Y., Tang, Y.G., Hu, Z.Q., Zhang, P. and Yin, T.C. (2020), "Dynamic response of spar-type floating offshore wind turbine in freak wave considering the wave-current interaction effect", Appl. Ocean Res., 100. https://doi.org/10.1016/j.apor.2020.102178.
  20. Rahmdel, S., Wang, B., Han, C., Kim, K. and Park, S. (2016), "A parametric study of spar-type floating offshore wind turbines (FOWTs) by numerical and experimental investigations", Ships Offshore Struct., 11(8), 818-832. https://doi.org/10.1080/17445302.2015.1073865.
  21. Rajeswari, K. and Nallayarasu, S. (2022), "Experimental and numerical investigation on the suitability of semi-submersible floaters to support vertical axis wind turbine", Ships Offshore Struct., 17(8), 1743-1754. https://doi.org/10.1080/17445302.2021.1938800.
  22. Sajeer, M.M. and Chakraborty, A. (2021), "Long-term fatigue reliability enhancement of horizontal axis wind turbine blade", Wind Struct., 33(2), 169-185. https://doi.org/10.12989/was.2021.33.2.169. 
  23. Shabakhty, N. and Khansari, A. (2019), "Fatigue analysis of a jacket structure to linear and weakly nonlinear random waves", J. Offshore Mech. Arctic Eng. Transact. Asme, 141(6). https://doi.org/10.1115/1.4042946.
  24. Shang, Y., Cen, S. and Li, C.F. (2016), "A 4-node quadrilateral flat shell element formulated by the shape-free HDF plate and HSF membrane elements", Eng Computat., 33(3), 713-741. https://doi.org/10.1108/Ec-04-2015-0102.
  25. Thome, M., El Moctar, O. and Schellin, T. E. (2023), "Assessment of Hydrodynamic Loads on an Offshore Monopile Structure Considering Hydroelasticity Effects", J. Mar. Sci. Eng., 11(2). https://doi.org/10.3390/jmse11020350.
  26. Wang, B., SajadRahmdel, Han, C., Jung, S. and Park, S. (2014), "Hydrodynamic response of alternative floating substructures for spar-type offshore wind turbines", Wind Struct., 18(3), 267-279. https://doi.org/DOI10.12989/was.2014.18.3.267.
  27. Ward, J.C., Goupee, A.J., Viselli, A.M. and Dagher, H.J. (2021), "Experimental investigation into the dynamic behavior of a floating offshore wind turbine stabilized via a suspended counterweight", Ocean Eng., 228. https://doi.org/10.1016/j.oceaneng.2021.108906.
  28. Wedel-Heinen, J., Ronold, K.O. and Madsen, P.H. (2007), "Revision of DNV design standard for offshore wind turbine structures", Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, 5, 433-439.
  29. You, Y.S., Song, K.Y. and Sun, M.Y. (2022), "Variable natural frequency damper for minimizing response of offshore wind turbine: Principle verification through analysis of controllable natural frequencies", J. Mar. Sci. Eng., 10(7). https://doi.org/10.3390/jmse10070983.
  30. Zhang, J.P., Wang, M.Q., Gong, Z. and Shi, F.F. (2020), "Dynamic analysis of offshore wind turbines", Wind Struct., 31(4), 373-380. https://doi.org/10.12989/was.2020.31.4.373.
  31. Zhang, R.F., Cao, Y.R. and Dai, K.S. (2021), "Response control of wind turbines with ungrounded tuned mass inerter system (TMIS) under wind loads", Wind Struct., 32(6), 573-586. https://doi.org/10.12989/was.2021.32.6.573.