DOI QR코드

DOI QR Code

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain (Department of Civil and Environmental Engineering, Indian Institute of Technology Patna) ;
  • Syed Khaja Karimullah Hussaini (Department of Civil and Environmental Engineering, Indian Institute of Technology Patna)
  • 투고 : 2022.11.22
  • 심사 : 2023.11.14
  • 발행 : 2023.12.10

초록

Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.

키워드

참고문헌

  1. Alam, M.N. and Hussaini, S.K.K. (2023), "Performance of geogrid-reinforced rubber-coated ballast and natural ballast mix under direct shear conditions", J. Mater. Civil Eng., 35(9), 04023290. https://doi.org/10.1061/JMCEE7.MTENG-15461.
  2. Bolton, M. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65P.
  3. Carroll, M.D. (1979), Sample size effects using the NGI direct simple shear apparatus, Technical report, Defense Technical Information Center, VA.
  4. Cerato, A.B. and Lutenegger, A.J. (2006), "Specimen size and scale effects of direct shear box tests of sands", Geotech.Test. J., 29(6), 507-516. https://doi.org/10.3923/jas.2010. 2027.2033.
  5. Cui, L. and O'sullivan, C. (2006), "Exploring the macro-and micro-scale response of an idealised granular material in the direct shear apparatus", Geotechnique, 56(7), 455-468. https://doi.org/10.1680/geot.2006.56.7.455.
  6. Cundall, P.A. and Strack, O.D. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
  7. Dadkhah, R., Ghafoori, M., Ajalloeian, R. and Lashkaripour, G.R. (2010), "The effect of scale direct shear tests on the strength parameters of clayey sand in Isfahan city, Iran", J. Appl. Sci., 18, https:doi.org/10.3923/jas.2010.2027.2033.
  8. Fu, Q. and Wu, Y. (2019), "Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads", Geomech. Eng., 19(3), 241-254. https://doi.org/10.12989/gae.2019.19.3.241.
  9. Gong, J., Li, L., Zhao, L., Zou, J. and Nie, Z. (2021), "DEM study on effects of fabric and aspect ratio on small strain stiffness of granular soils", Geomech. Eng., 24(1), 57-65. https://doi.org/10.12989/gae.2021.24.1.057.
  10. Hamidi, A., Azini, E. and Masoudi, B. (2012), "Impact of gradation on the shear strength-dilation behavior of well graded sand-gravel mixtures", Scientia Iranica, 19(3), 393-402. http://doi.org/10.1007/s10035-004-0189-3.
  11. Huang, H. and Tutumluer, E. (2011), "Discrete element modeling for fouled railroad ballast", Constr. Build. Mater., 25(8), 3306-3312. https://doi.org/10.1016/j.conbuildmat.2011.03.019.
  12. Huang, H. and Tutumluer, E. (2014), "Image-aided element shape generation method in discrete- element modeling for railroad ballast", J. Mater. Civil Eng., 26(3), 527-535. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000839.
  13. Huang, H., Tutumluer, E. and Dombrow, W. (2009a), "Laboratory characterization of fouled railroad ballast behavior", Transport. Res. Record, 2117(1), 93-101, https://doi.org/10.3141/2117-1.
  14. Huang, H., Tutumluer, E., Hashash, Y.M. and Ghaboussi, J. (2009b), "Discrete element modeling of aggregate behavior in fouled railroad ballast", in "Recent Advancement in Soil Behavior, in Situ Test Methods, Pile Foundations, and Tunneling: Selected Papers from the 2009 GeoHunan International Conference", 33-41, https://doi.org/10.1061/41044(351)6.
  15. Indraratna, B., Hussaini, S.K.K. and Vinod, J. (2013), "The lateral displacement response of geogrid- reinforced ballast under cyclic loading", Geotext. Geomembranes, 39, 20-29. https://doi.org/10.1016/j.geotexmem.2013.07.007.
  16. Indraratna, B., Ngo, N.T. and Rujikiatkamjorn, C. (2011a), "Behavior of geogrid-reinforced ballast under various levels of fouling", Geotext. Geomembranes, 29(3), 313-322, https://doi.org/10.1016/j.geotexmem.2011.01.015.
  17. Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C. and Vinod, J. (2014), "Behavior of fresh and fouled railway ballast subjected to direct shear testing: discrete element simulation", Int. J. Geomech., 14(1), 34-44, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000264.
  18. Indraratna, B., Salim, W. and Rujikiatkamjorn, C. (2011b), Advanced rail geotechnology-ballasted track, CRC press. https://doi.org/10.1201/b10861.
  19. IRS-GE-1 (2004), "Specification for track ballast", Research Design and Standard organisation (RDSO).
  20. Itasca, C. (2017), "PFC3D v5. 0-user manual", Itasca Consulting Group, Minneapolis.
  21. Jewell, R. (1989), "Direct shear tests on sand", Geotechnique, 39(2), 309-322. https://doi.org/10.1680/geot.1989.39.2.309.
  22. Lim, W. and McDowell, G. (2005), "Discrete element modelling of railway ballast", Granular. Matter., 7(1), 19-29. https://doi.org/10.1007/s10035-004-0189-3.
  23. Liu, X., Zhou, A., Shen, S.L., Li, J. and Arulrajah, A. (2021), "Modelling unsaturated soil-structure interfacial behavior by using DEM", Comput. Geotech., 137, 104305, https://doi.org/10.1016/j.compgeo.2021.104305.
  24. Lu, M. and McDowell, G. (2007), "The importance of modelling ballast particle shape in the discrete element method", Granular. Matter., 9(1-2), 69. https://doi.org/10.1007/s10035-006-0021-3.
  25. Masson, S. and Martinez, J. (2001), "Micromechanical analysis of the shear behavior of a granular material", J. Eng. Mech., 127(10), 1007-1016. https://doi.org/:10.1061/(ASCE)0733-9399(2001)127:10(1007).
  26. McDowell, G., Harireche, O., Konietzky, H., Brown, S. and Thom, N. (2006), "Discrete element modelling of geogrid-reinforced aggregates", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 159(1), 35-48. https://doi.org/10.1680/geng.2006.159.1.35.
  27. Mikasa, M. (1960), "New direct shear test apparatus", Proceedings of the 5th Annual Meeting, JSCE, 45-48.
  28. Ngamkhanong, C., Kaewunruen, S. and Baniotopoulos, C. (2017), "A review on modelling and monitoring of railway ballast", Struct. Monit. Maintenance, 4(3), 195. https://doi.org/10.12989/smm.2017.4.3.195.
  29. Ngo, N.T., Indraratna, B. and Rujikiatkamjorn, C. (2014), "DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal", Comput. Geotech., 55, 224-231. https://doi.org/10.1016/j.compgeo.2013.09.008.
  30. Oda, M. and Iwashita, K. (2020), Mechanics of granular materials: an introduction, CRC press. https://doi.org/10.1201/9781003077817.
  31. Palmeira, E. and Milligan, G. (1991), "Scale effects in direct shear tests on sand", 28, 340.
  32. Parsons, J.D. (1936), "Progress report on an investigation of the shearing resistance of cohesion- less soils", Proceedings of the 1st international conference on soil mechanics and foundation engineering.
  33. Salazar, A., S'aez, E. and Pardo, G. (2015), "Modeling the direct shear test of a coarse sand using the 3D discrete element method with a rolling friction model", Comput. Geotech., 67, 83-93. https://doi.org/10.1016/j.compgeo.2015.02.017.
  34. Shibuya, S., Mitachi, T. and Tamate, S. (1997), "Interpretation of direct shear box testing of sands as quasi-simple shear", Geotechnique 47(4), 769-790. https://doi.org/10.1680/geot.1997.47.4.769.
  35. Suhr, B., Marschnig, S. and Six, K. (2018), "Comparison of two different types of railway ballast in compression and direct shear tests: experimental results and DEM model validation", Granular. Matter., 20(4), 1-13. https://doi.org/10.1007/s10035-018-0843-9.
  36. Suhr, B. and Six, K. (2016), "On the effect of stress dependent interparticle friction in direct shear tests", Powder Technol., 294, 211-220. https://doi.org/10.1016/j.powtec.2016.02.029.
  37. Suhr, B. and Six, K. (2017), "Parametrisation of a DEM model for railway ballast under different load cases", Granular. Matter., 19(4), 1-16. https://doi.org/10.1007/s10035-017-0740-7.
  38. Sweta, K. and Hussaini, S.K.K. (2018), "Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions", Geotext. Geomembranes, 46(3), 251-256. https://doi.org/10.1016/j.geotexmem.2017.12.001.
  39. Sweta, K. and Hussaini, S.K.K. (2019), "Performance of the geogrid-reinforced railroad ballast in direct shear mode", Proceedings of the Institution of Civil Engineers-Ground Improvement, 172(4), 244-256, URL https://doi.org/10.1680/jgrim.18.00107.
  40. Tsoungui, O., Vallet, D. and Charmet, J.C. (1999), "Numerical model of crushing of grains inside two-dimensional granular materials", Powder Technol., 105(1-3), 190-198. https://doi.org/10.1016/S0032-5910(99)00137-0
  41. Wang, P. and Arson, C. (2016), "Discrete element modeling of shielding and size effects during single particle crushing", Comput. Geotech., 78, 227-236, https://doi.org/10.1016/j.compgeo.2016.04.003.
  42. Wang, Z., Jing, G., Yu, Q. and Yin, H. (2015), "Analysis of ballast direct shear tests by discrete element method under different normal stress", Measurement, 63, 17-24. https://doi.org/10.1016/j.measurement.2014.11.012.
  43. Wu, P.K., Matsushima, K. and Tatsuoka, F. (2008), "Effects of specimen size and some other factors on the strength and deformation of granular soil in direct shear tests", Geotech. Test. J., 31(1), 45-64. https://doi.org/10.1520/GTJ100773.
  44. Zahran, K. and Naggar, H.E. (2020), "Effect of sample size on TDA shear strength parameters in direct shear tests", Transport. Res. Record, 2674(9), 1110-1119. https://doi.org/10.1177/0361198120934482.
  45. Zhang, X., Zhao, C. and Zhai, W. (2017), "Dynamic behavior analysis of high-speed railway ballast under moving vehicle loads using discrete element method", Int. J. Geomech., 17(7), 04016157. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000871.