References
- Alam, M.N. and Hussaini, S.K.K. (2023), "Performance of geogrid-reinforced rubber-coated ballast and natural ballast mix under direct shear conditions", J. Mater. Civil Eng., 35(9), 04023290. https://doi.org/10.1061/JMCEE7.MTENG-15461.
- Bolton, M. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65P.
- Carroll, M.D. (1979), Sample size effects using the NGI direct simple shear apparatus, Technical report, Defense Technical Information Center, VA.
- Cerato, A.B. and Lutenegger, A.J. (2006), "Specimen size and scale effects of direct shear box tests of sands", Geotech.Test. J., 29(6), 507-516. https://doi.org/10.3923/jas.2010. 2027.2033.
- Cui, L. and O'sullivan, C. (2006), "Exploring the macro-and micro-scale response of an idealised granular material in the direct shear apparatus", Geotechnique, 56(7), 455-468. https://doi.org/10.1680/geot.2006.56.7.455.
- Cundall, P.A. and Strack, O.D. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
- Dadkhah, R., Ghafoori, M., Ajalloeian, R. and Lashkaripour, G.R. (2010), "The effect of scale direct shear tests on the strength parameters of clayey sand in Isfahan city, Iran", J. Appl. Sci., 18, https:doi.org/10.3923/jas.2010.2027.2033.
- Fu, Q. and Wu, Y. (2019), "Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads", Geomech. Eng., 19(3), 241-254. https://doi.org/10.12989/gae.2019.19.3.241.
- Gong, J., Li, L., Zhao, L., Zou, J. and Nie, Z. (2021), "DEM study on effects of fabric and aspect ratio on small strain stiffness of granular soils", Geomech. Eng., 24(1), 57-65. https://doi.org/10.12989/gae.2021.24.1.057.
- Hamidi, A., Azini, E. and Masoudi, B. (2012), "Impact of gradation on the shear strength-dilation behavior of well graded sand-gravel mixtures", Scientia Iranica, 19(3), 393-402. http://doi.org/10.1007/s10035-004-0189-3.
- Huang, H. and Tutumluer, E. (2011), "Discrete element modeling for fouled railroad ballast", Constr. Build. Mater., 25(8), 3306-3312. https://doi.org/10.1016/j.conbuildmat.2011.03.019.
- Huang, H. and Tutumluer, E. (2014), "Image-aided element shape generation method in discrete- element modeling for railroad ballast", J. Mater. Civil Eng., 26(3), 527-535. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000839.
- Huang, H., Tutumluer, E. and Dombrow, W. (2009a), "Laboratory characterization of fouled railroad ballast behavior", Transport. Res. Record, 2117(1), 93-101, https://doi.org/10.3141/2117-1.
- Huang, H., Tutumluer, E., Hashash, Y.M. and Ghaboussi, J. (2009b), "Discrete element modeling of aggregate behavior in fouled railroad ballast", in "Recent Advancement in Soil Behavior, in Situ Test Methods, Pile Foundations, and Tunneling: Selected Papers from the 2009 GeoHunan International Conference", 33-41, https://doi.org/10.1061/41044(351)6.
- Indraratna, B., Hussaini, S.K.K. and Vinod, J. (2013), "The lateral displacement response of geogrid- reinforced ballast under cyclic loading", Geotext. Geomembranes, 39, 20-29. https://doi.org/10.1016/j.geotexmem.2013.07.007.
- Indraratna, B., Ngo, N.T. and Rujikiatkamjorn, C. (2011a), "Behavior of geogrid-reinforced ballast under various levels of fouling", Geotext. Geomembranes, 29(3), 313-322, https://doi.org/10.1016/j.geotexmem.2011.01.015.
- Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C. and Vinod, J. (2014), "Behavior of fresh and fouled railway ballast subjected to direct shear testing: discrete element simulation", Int. J. Geomech., 14(1), 34-44, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000264.
- Indraratna, B., Salim, W. and Rujikiatkamjorn, C. (2011b), Advanced rail geotechnology-ballasted track, CRC press. https://doi.org/10.1201/b10861.
- IRS-GE-1 (2004), "Specification for track ballast", Research Design and Standard organisation (RDSO).
- Itasca, C. (2017), "PFC3D v5. 0-user manual", Itasca Consulting Group, Minneapolis.
- Jewell, R. (1989), "Direct shear tests on sand", Geotechnique, 39(2), 309-322. https://doi.org/10.1680/geot.1989.39.2.309.
- Lim, W. and McDowell, G. (2005), "Discrete element modelling of railway ballast", Granular. Matter., 7(1), 19-29. https://doi.org/10.1007/s10035-004-0189-3.
- Liu, X., Zhou, A., Shen, S.L., Li, J. and Arulrajah, A. (2021), "Modelling unsaturated soil-structure interfacial behavior by using DEM", Comput. Geotech., 137, 104305, https://doi.org/10.1016/j.compgeo.2021.104305.
- Lu, M. and McDowell, G. (2007), "The importance of modelling ballast particle shape in the discrete element method", Granular. Matter., 9(1-2), 69. https://doi.org/10.1007/s10035-006-0021-3.
- Masson, S. and Martinez, J. (2001), "Micromechanical analysis of the shear behavior of a granular material", J. Eng. Mech., 127(10), 1007-1016. https://doi.org/:10.1061/(ASCE)0733-9399(2001)127:10(1007).
- McDowell, G., Harireche, O., Konietzky, H., Brown, S. and Thom, N. (2006), "Discrete element modelling of geogrid-reinforced aggregates", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 159(1), 35-48. https://doi.org/10.1680/geng.2006.159.1.35.
- Mikasa, M. (1960), "New direct shear test apparatus", Proceedings of the 5th Annual Meeting, JSCE, 45-48.
- Ngamkhanong, C., Kaewunruen, S. and Baniotopoulos, C. (2017), "A review on modelling and monitoring of railway ballast", Struct. Monit. Maintenance, 4(3), 195. https://doi.org/10.12989/smm.2017.4.3.195.
- Ngo, N.T., Indraratna, B. and Rujikiatkamjorn, C. (2014), "DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal", Comput. Geotech., 55, 224-231. https://doi.org/10.1016/j.compgeo.2013.09.008.
- Oda, M. and Iwashita, K. (2020), Mechanics of granular materials: an introduction, CRC press. https://doi.org/10.1201/9781003077817.
- Palmeira, E. and Milligan, G. (1991), "Scale effects in direct shear tests on sand", 28, 340.
- Parsons, J.D. (1936), "Progress report on an investigation of the shearing resistance of cohesion- less soils", Proceedings of the 1st international conference on soil mechanics and foundation engineering.
- Salazar, A., S'aez, E. and Pardo, G. (2015), "Modeling the direct shear test of a coarse sand using the 3D discrete element method with a rolling friction model", Comput. Geotech., 67, 83-93. https://doi.org/10.1016/j.compgeo.2015.02.017.
- Shibuya, S., Mitachi, T. and Tamate, S. (1997), "Interpretation of direct shear box testing of sands as quasi-simple shear", Geotechnique 47(4), 769-790. https://doi.org/10.1680/geot.1997.47.4.769.
- Suhr, B., Marschnig, S. and Six, K. (2018), "Comparison of two different types of railway ballast in compression and direct shear tests: experimental results and DEM model validation", Granular. Matter., 20(4), 1-13. https://doi.org/10.1007/s10035-018-0843-9.
- Suhr, B. and Six, K. (2016), "On the effect of stress dependent interparticle friction in direct shear tests", Powder Technol., 294, 211-220. https://doi.org/10.1016/j.powtec.2016.02.029.
- Suhr, B. and Six, K. (2017), "Parametrisation of a DEM model for railway ballast under different load cases", Granular. Matter., 19(4), 1-16. https://doi.org/10.1007/s10035-017-0740-7.
- Sweta, K. and Hussaini, S.K.K. (2018), "Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions", Geotext. Geomembranes, 46(3), 251-256. https://doi.org/10.1016/j.geotexmem.2017.12.001.
- Sweta, K. and Hussaini, S.K.K. (2019), "Performance of the geogrid-reinforced railroad ballast in direct shear mode", Proceedings of the Institution of Civil Engineers-Ground Improvement, 172(4), 244-256, URL https://doi.org/10.1680/jgrim.18.00107.
- Tsoungui, O., Vallet, D. and Charmet, J.C. (1999), "Numerical model of crushing of grains inside two-dimensional granular materials", Powder Technol., 105(1-3), 190-198. https://doi.org/10.1016/S0032-5910(99)00137-0
- Wang, P. and Arson, C. (2016), "Discrete element modeling of shielding and size effects during single particle crushing", Comput. Geotech., 78, 227-236, https://doi.org/10.1016/j.compgeo.2016.04.003.
- Wang, Z., Jing, G., Yu, Q. and Yin, H. (2015), "Analysis of ballast direct shear tests by discrete element method under different normal stress", Measurement, 63, 17-24. https://doi.org/10.1016/j.measurement.2014.11.012.
- Wu, P.K., Matsushima, K. and Tatsuoka, F. (2008), "Effects of specimen size and some other factors on the strength and deformation of granular soil in direct shear tests", Geotech. Test. J., 31(1), 45-64. https://doi.org/10.1520/GTJ100773.
- Zahran, K. and Naggar, H.E. (2020), "Effect of sample size on TDA shear strength parameters in direct shear tests", Transport. Res. Record, 2674(9), 1110-1119. https://doi.org/10.1177/0361198120934482.
- Zhang, X., Zhao, C. and Zhai, W. (2017), "Dynamic behavior analysis of high-speed railway ballast under moving vehicle loads using discrete element method", Int. J. Geomech., 17(7), 04016157. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000871.