References
- ANSYS CFX-Solver Theory Guide (2020), 15317(April), 724-746.
- Bailey, P.A. and Kwok, K.C.S. (1985), "Interference excitation of twin tall buildings", J. Wind Eng. Ind. Aerod., 21(3), 323-338. https://doi.org/10.1016/0167-6105(85)90043-1.
- Bairagi, A.K. and Dalui, S.K. (2022a), "Minimization of wind load on setback tall building using multi objective optimization procedure", Wind. Struct. An Int. J., 35(3), 193. https://doi.org/10.12989/WAS.2022.35.3.193.
- Behera, S., Ghosh, D. Mittal, A.K. Tamura, Y. and Kim, W. (2020), "The effect of plan ratios on wind interference of two tall buildings", Struct. Des. Tall Build, 29(1), e1680. https://doi.org/https://doi.org/10.1002/tal.1680.
- Bhattacharya, S. and Dalui, S.K. (2022), "Effect of tuned mass damper in wind-induced response of "V" plan-shaped tall building", Struct. Des. Tall Build., 31(9), e1931. https://doi.org/10.1002/TAL.1931.
- Blocken, B. (2015), "Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations", Build Environ., 91, 219-245. https://doi.org/10.1016/J.BUILDENV.2015.02.015.
- Blazik-Borowa, E. (2006), "Interference loads of two cylinders in a side-by-side arrangement", Wind. Struct., 9(1), 75. https://doi.org/10.12989/WAS.2006.9.1.075.
- Celik, I.B., Ghia, U., Roache, P.J., Freitas, C.J., Coleman, H. and Raad, P.E. (2008), "Procedure for estimation and reporting of uncertainty due to discretization in CFD applications", J Fluids Eng.-T ASME, 130(7), 0780011-0780014. https://doi.org/10.1115/1.2960953/444689.
- Das, A., Paul, R. and Dalui, S.K., (2023), "Shape optimization of corner recessed square tall building employing surrogate modelling", Wind. Struct., 36(2), 105. https://doi.org/10.12989/WAS.2023.36.2.105.
- Dongmei, H., Xue, Z., Shiqing, H., Xuhui, H. and Hua, H. (2017), "Characteristics of the aerodynamic interference between two high-rise buildings of different height and identical square cross-section", Wind Struct., 24(5), 501-528. https://doi.org/10.12989/WAS.2017.24.5.501.
- English, E.C. and Fricke, F.R. (1999a), "The interference index and its prediction using a neural network analysis of wind-tunnel data", J. Wind Eng. Ind. Aerod., 83(s.1-3), 567-575. https://doi.org/10.1016/s0167-6105(99)00102-6.
- English, E.C. and Fricke, F.R. (1999b), "The interference index and its prediction using a neural network analysis of wind-tunnel data", J. Wind Eng. Ind. Aerod., 83(1-3), 567-575. https://doi.org/10.1016/S0167-6105(99)00102-6.
- Franke, J., Hirsch, C. Jensen, A. Krus, H. Schatzmann, M. Westbury, P. Miles, S. Wisse, J. and Wright, N. (2004), "Recommendations on the use of CFD in wind engineering", Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics. C.1.1-C1.11.
- Gomes, M.G., Moret Rodrigues, A. and Mendes, P. (2005), "Experimental and numerical study of wind pressures on irregular-plan shapes", J. Wind Eng. Ind. Aerod., 93(10), 741-756. https://doi.org/10.1016/J.JWEIA.2005.08.008.
- Harris, C.L. (1934), "Influence of neighboring structures on the wind pressure on tall buildings", J. Res. Natl. Bur. Stand. (U. S.), 12(637).
- Heschong, L., Aumann, D. Jenkins, N. Suries, T. and Therkelsen, R. L. (2003), "Windows and offices: a study of office worker performance and the indoor environment", California Energy Commission.
- Hui, Y., Tamura, Y. and Yoshida, A. (2012), "Mutual interference effects between two high-rise building models with different shapes on local peak pressure coefficients", J. Wind Eng. Ind. Aerod., 104-106, 98-108. https://doi.org/10.1016/J.JWEIA.2012.04.004.
- Hui, Y., Yoshida, A. and Tamura, Y. (2013), "Interference effects between two rectangular-section high-rise buildings on local peak pressure coefficients", J Fluids Struct., 37, 120-133. https://doi.org/10.1016/J.JFLUIDSTRUCTS.2012.11.007.
- IS: 875 (2015), Indian Standard Design Loads (Other Than Earthquake) for Buildings And Structures- Code of Practice,Part 3(Wind Loads). In BIS, New Delhi (p. 51)
- Kaplan, S. (1995), "The restorative benefits of nature: Toward an integrative framework", J Environ Psychol., 15(3), 169-182. https://doi.org/10.1016/0272-4944(95)90001-2.
- Kar, R., Dalui, S.K. and Bhattacharjya, S. (2019), "An efficient optimization approach for wind interference effect on octagonal tall building", Wind. Struct., 28(2), 111. https://doi.org/10.12989/WAS.2019.28.2.111.
- Ke, S.T., Liang, J. Zhao, Y.J. Ge. (2015), "Influence of ventilation rate on the aerodynamic interference between two extra-large indirect dry cooling towers by CFD", Wind. Struct., 20(3), 449. https://doi.org/10.12989/WAS.2015.20.3.449.
- Khanduri, A.C., Bedard, C. and Stathopoulos, T. (1997), "Modelling wind-induced interference effects using back propagation neural networks", J. Wind Eng. Ind. Aerodyn. 72(1-3), 71-79. https://doi.org/10.1016/s0167-6105(97)00259-6.
- Khanduri, A.C., Stathopoulos, T. and Bedard, C. (1998), "Wind induced interference effects on buildings - a review of the state-of-the-art", Eng. Struct., 20(7), 617-630. https://doi.org/10.1016/s0141-0296(97)00066-7.
- Khanduri, A.C., Stathopoulos, T. and Bedardrn, C. (2000), "Generalization of wind-induced interference effects for two buildings", Wind. Struct., 3(4), 255. https://doi.org/10.12989/WAS.2000.3.4.255.
- Kim, W., Tamura, Y. and Yoshida, A. (2011), "Interference effects on local peak pressures between two buildings" J. Wind Eng. Ind. Aerod., 99(5), 584-600. https://doi.org/10.1016/J.JWEIA.2011.02.007.
- Kim, W., Tamura, Y., Yoshida, A. and Yi, J.-H. (2017), "Interference effects of an adjacent tall building with various sizes on local wind forces acting on a tall building", Adv. Struct. Eng., 21(10), 1469-1481. https://doi.org/10.1177/1369433217750170.
- Kim, Y.C. and Kand, J. (2013), "Wind pressures on tapered and set-back tall buildings", J Fluids Struct., 39, 306-321. https://doi.org/10.1016/J.JFLUIDSTRUCTS.2013.02.008.
- Kim, Y.C. and Cao, S. (2023), "Application of probabilistic method to determination of aerodynamic force coefficients on tall buildings", Wind. Struct., 36(4), 249. https://doi.org/10.12989/WAS.2023.36.4.249.
- Kumar, D. and Dalui, S.K. (2017), "Effect of internal angles between limbs of cross plan shaped tall building under wind load", Wind. Struct., 24(2), 95-118. https://doi.org/10.12989/WAS.2017.24.2.095.
- Lo, Y.L., Li, Y.C. and Kim, Y.C. (2020), "Downstream interference effect of low-Scruton-number high-rise buildings under turbulent boundary layer flow", J. Wind Eng. Ind. Aerod., 198, 104101. https://doi.org/10.1016/J.JWEIA.2020.104101.
- Mallick, M., Kumar, A. and Patra, K.C. (2019), "Experimental Investigation on the Wind-Induced Pressures on C-Shaped Buildings", KSCE J. Civ. Eng., 23(8), 3535-3546. https://doi.org/10.1007/S12205-019-1929-6.
- Mallick, M., Kumar, A. and Patra, K.C. (2022), "Experimental and numerical analysis of mean pressure coefficient on C-shaped building with and without round corner", Hydrol. Modeling. Water Sci. Technol. Library, 109, 55-68. https://doi.org/10.1007/978-3-030-81358-1_6.
- Mallick, M., Mohanta, A. Kumar, A. and Raj, V. (2018), "Modelling of wind pressure coefficients on C-shaped building models", Model. Simul. Eng., 2018, 6524945. https://doi.org/10.1155/2018/6524945.
- Mandal, S., Dalui, S.K. and Bhattacharjya, S. (2021), "Wind induced response of corner modified 'U' plan shaped tall building", Wind. Struct., 32(6), 521-537. https://doi.org/10.12989/was.2021.32.6.521.
- Mukherjee, S., Chakraborty, S., Dalui, S. and Ahuja, A. (2014), "Wind induced pressure on "Y" plan shape tall building", Wind. Struct., 19, 523. https://doi.org/10.12989/was.2014.19.5.523.
- Nagar, S.K., Raj, R. and Dev, N. (2020), "Experimental study of wind-induced pressures on tall buildings of different shapes" Wind. Struct., 31(5), 431. https://doi.org/10.12989/WAS.2020.31.5.431.
- Navai, M. and Veitch, J. (2003), Acoustic Satisfaction in Open-Plan Offices: Review and Recommendations. https://doi.org/10.4224/20386513
- Pal, S., Meena, R.K., Raj, R. and Li, M. (2021), "Wind tunnel study of a fish-plan shape model under different isolated wind incidences", Wind. Struct., 33(5), 353. https://doi.org/10.12989/WAS.2021.33.5.353.
- Peng, H., Liu, Z. Liu, H. Lin, K. and Hu, G. (2021), "Experimental investigations of interference effects on wind pressures of tall buildings", Adv. Struct. Eng., 24(16), 3837-3852. https://doi.org/10.1177/13694332211042777.
- Patankar, S.V. and Spalding, D.B. (1972), "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows", Int. J. Heat Mass Transf., 15(10), 1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3.
- Paul, R. and Dalui, S.K. (2016), "Wind effects on 'Z' plan-shaped tall building: a case study", Int. J. Adv. Struct., 8(3), 319-335. https://doi.org/10.1007/S40091-016-0134-9/FIGURES/21.
- Sanyal, P. and Dalui, S. K. (2020), "Comparison of aerodynamic coefficients of various types of Y-plan-shaped tall buildings", Asian J. Civ. Eng, 21(7), 1109-1127. https://doi.org/10.1007/s42107-020-00265-9.
- Sanyal, P. and Dalui, S.K. (2021), "Effects of side ratio for 'Y' plan shaped tall building under wind load", Build Simul., 14(4), 1221-1236. https://doi.org/10.1007/s12273-020-0731-1.
- Sanyal, P. and Dalui, S.K. (2022), "Forecasting of aerodynamic coefficients of tri-axially symmetrical Y plan shaped tall building based on CFD data trained ANN", J. Build. Eng., 47, 103889. https://doi.org/10.1016/j.jobe.2021.103889.
- Shirzadeh Germi, M. and Eimani Kalehsar, H. (2021), "Numerical investigation of interference effects on the critical wind velocity of tall buildings", Structures, 30, 239-252. https://doi.org/10.1016/J.ISTRUC.2021.01.013.
- Sun, X., Wu, H. Wu, Y. and Su, N. (2021), "Wind-induced responses and control of a Kilometer skyscraper with mass and viscous dampers", J. Build. Eng., 43, 102552. https://doi.org/10.1016/J.JOBE.2021.102552.
- Tanaka, H., Tamura, Y. Ohtake, K. Nakai, M. and Kim, Y. C. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108, 179-191. https://doi.org/10.1016/J.JWEIA.2012.04.014.
- Tang, U.F. and Kwok, K.C.S. (2004), "Interference excitation mechanisms on a 3DOF aeroelastic CAARC building model", J. Wind Eng. Ind. Aerod., 92(14-15), 1299-1314. https://doi.org/10.1016/J.JWEIA.2004.08.004.
- Tominaga, Y., Mochida, A. Yoshie, R. Kataoka, H. Nozu, T. Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod. 96(10-11), 1749-1761. https://doi.org/10.1016/J.JWEIA.2008.02.058.
- Xing, F., Mohotti, D. and Chauhan, K. (2018), "Study on localised wind pressure development in gable roof buildings having different roof pitches with experiments, RANS and LES simulation models", Build Environ., 143, 240-257. https://doi.org/10.1016/J.BUILDENV.2018.07.026.
- Xing, Q. and Qian, J. (2018), "CFD Analysis of wind interference effects of three high-rise buildings. J. Asian Archit. Build. 17(3), 487-494. https://doi.org/10.3130/jaabe.17.487
- Zhao, J.G. and Lam, K.M. (2008), "Interference effects in a group of tall buildings closely arranged in an L- or T-shaped pattern", Wind. Struct., 11(1), 1. https://doi.org/10.12989/WAS.2008.11.1.001.
- Zu, G.B. and Lam. K.M. (2018), "Across-wind excitation mechanism for interference of twin tall buildings in tandem arrangement", Wind. Struct., 26(6), 397. https://doi.org/10.12989/WAS.2018.26.6.397.