DOI QR코드

DOI QR Code

Numerical investigation of wind interference effect on twin C-shaped tall buildings

  • Himanshoo Verma (Department of Applied Mechanics, Visvesvaraya National Institute of Technology (VNIT) Nagpur) ;
  • R. S. Sonparote (Department of Applied Mechanics, Visvesvaraya National Institute of Technology (VNIT) Nagpur)
  • Received : 2023.03.03
  • Accepted : 2023.10.20
  • Published : 2023.12.25

Abstract

This study is to investigate the effect of interference between two C-shaped high-rise buildings by computational fluid dynamics (CFD), focusing on the variation of the local pressure coefficient (CP) and the mean pressure coefficient (CPMEAN). Sixteen building position cases are considered for the present study. These cases were based on the position and height of the interference building (IB). The pressure coefficient (CP) is calculated on the principal building (PB) and is compared with an isolated building identical in shape and size. The interference effect on PB has also been presented in reference for the interference factor (IF). According to the findings, the maximum force coefficient on the PB is 0.971 and it is 10.97% more than the isolated PB when IB is located at position 2b (two times the width of the building), and the interfering height of 13H/15 mm. The moment coefficient on PB is 1.27, which is 27.36% less than the isolated case in which IB pushed 2b to 3b in the y direction with 750 mm height. In most of the cases, because of the shielding effect of the IB, the value of force coefficient (CF) on PB has been reduced. On the face of the PB, there are also considerable differences in the mean pressure coefficient CPMEAN. When IB was positioned at a location of 2b in Y direction and an interfering height of 13H/15 mm, the maximum CPMEAN (1.58) was observed on the leeward face of PB.

Keywords

References

  1. ANSYS CFX-Solver Theory Guide (2020), 15317(April), 724-746.
  2. Bailey, P.A. and Kwok, K.C.S. (1985), "Interference excitation of twin tall buildings", J. Wind Eng. Ind. Aerod., 21(3), 323-338. https://doi.org/10.1016/0167-6105(85)90043-1.
  3. Bairagi, A.K. and Dalui, S.K. (2022a), "Minimization of wind load on setback tall building using multi objective optimization procedure", Wind. Struct. An Int. J., 35(3), 193. https://doi.org/10.12989/WAS.2022.35.3.193.
  4. Behera, S., Ghosh, D. Mittal, A.K. Tamura, Y. and Kim, W. (2020), "The effect of plan ratios on wind interference of two tall buildings", Struct. Des. Tall Build, 29(1), e1680. https://doi.org/https://doi.org/10.1002/tal.1680.
  5. Bhattacharya, S. and Dalui, S.K. (2022), "Effect of tuned mass damper in wind-induced response of "V" plan-shaped tall building", Struct. Des. Tall Build., 31(9), e1931. https://doi.org/10.1002/TAL.1931.
  6. Blocken, B. (2015), "Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations", Build Environ., 91, 219-245. https://doi.org/10.1016/J.BUILDENV.2015.02.015.
  7. Blazik-Borowa, E. (2006), "Interference loads of two cylinders in a side-by-side arrangement", Wind. Struct., 9(1), 75. https://doi.org/10.12989/WAS.2006.9.1.075.
  8. Celik, I.B., Ghia, U., Roache, P.J., Freitas, C.J., Coleman, H. and Raad, P.E. (2008), "Procedure for estimation and reporting of uncertainty due to discretization in CFD applications", J Fluids Eng.-T ASME, 130(7), 0780011-0780014. https://doi.org/10.1115/1.2960953/444689.
  9. Das, A., Paul, R. and Dalui, S.K., (2023), "Shape optimization of corner recessed square tall building employing surrogate modelling", Wind. Struct., 36(2), 105. https://doi.org/10.12989/WAS.2023.36.2.105.
  10. Dongmei, H., Xue, Z., Shiqing, H., Xuhui, H. and Hua, H. (2017), "Characteristics of the aerodynamic interference between two high-rise buildings of different height and identical square cross-section", Wind Struct., 24(5), 501-528. https://doi.org/10.12989/WAS.2017.24.5.501.
  11. English, E.C. and Fricke, F.R. (1999a), "The interference index and its prediction using a neural network analysis of wind-tunnel data", J. Wind Eng. Ind. Aerod., 83(s.1-3), 567-575. https://doi.org/10.1016/s0167-6105(99)00102-6.
  12. English, E.C. and Fricke, F.R. (1999b), "The interference index and its prediction using a neural network analysis of wind-tunnel data", J. Wind Eng. Ind. Aerod., 83(1-3), 567-575. https://doi.org/10.1016/S0167-6105(99)00102-6.
  13. Franke, J., Hirsch, C. Jensen, A. Krus, H. Schatzmann, M. Westbury, P. Miles, S. Wisse, J. and Wright, N. (2004), "Recommendations on the use of CFD in wind engineering", Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics. C.1.1-C1.11.
  14. Gomes, M.G., Moret Rodrigues, A. and Mendes, P. (2005), "Experimental and numerical study of wind pressures on irregular-plan shapes", J. Wind Eng. Ind. Aerod., 93(10), 741-756. https://doi.org/10.1016/J.JWEIA.2005.08.008.
  15. Harris, C.L. (1934), "Influence of neighboring structures on the wind pressure on tall buildings", J. Res. Natl. Bur. Stand. (U. S.), 12(637).
  16. Heschong, L., Aumann, D. Jenkins, N. Suries, T. and Therkelsen, R. L. (2003), "Windows and offices: a study of office worker performance and the indoor environment", California Energy Commission.
  17. Hui, Y., Tamura, Y. and Yoshida, A. (2012), "Mutual interference effects between two high-rise building models with different shapes on local peak pressure coefficients", J. Wind Eng. Ind. Aerod., 104-106, 98-108. https://doi.org/10.1016/J.JWEIA.2012.04.004.
  18. Hui, Y., Yoshida, A. and Tamura, Y. (2013), "Interference effects between two rectangular-section high-rise buildings on local peak pressure coefficients", J Fluids Struct., 37, 120-133. https://doi.org/10.1016/J.JFLUIDSTRUCTS.2012.11.007.
  19. IS: 875 (2015), Indian Standard Design Loads (Other Than Earthquake) for Buildings And Structures- Code of Practice,Part 3(Wind Loads). In BIS, New Delhi (p. 51)
  20. Kaplan, S. (1995), "The restorative benefits of nature: Toward an integrative framework", J Environ Psychol., 15(3), 169-182. https://doi.org/10.1016/0272-4944(95)90001-2.
  21. Kar, R., Dalui, S.K. and Bhattacharjya, S. (2019), "An efficient optimization approach for wind interference effect on octagonal tall building", Wind. Struct., 28(2), 111. https://doi.org/10.12989/WAS.2019.28.2.111.
  22. Ke, S.T., Liang, J. Zhao, Y.J. Ge. (2015), "Influence of ventilation rate on the aerodynamic interference between two extra-large indirect dry cooling towers by CFD", Wind. Struct., 20(3), 449. https://doi.org/10.12989/WAS.2015.20.3.449.
  23. Khanduri, A.C., Bedard, C. and Stathopoulos, T. (1997), "Modelling wind-induced interference effects using back propagation neural networks", J. Wind Eng. Ind. Aerodyn. 72(1-3), 71-79. https://doi.org/10.1016/s0167-6105(97)00259-6.
  24. Khanduri, A.C., Stathopoulos, T. and Bedard, C. (1998), "Wind induced interference effects on buildings - a review of the state-of-the-art", Eng. Struct., 20(7), 617-630. https://doi.org/10.1016/s0141-0296(97)00066-7.
  25. Khanduri, A.C., Stathopoulos, T. and Bedardrn, C. (2000), "Generalization of wind-induced interference effects for two buildings", Wind. Struct., 3(4), 255. https://doi.org/10.12989/WAS.2000.3.4.255.
  26. Kim, W., Tamura, Y. and Yoshida, A. (2011), "Interference effects on local peak pressures between two buildings" J. Wind Eng. Ind. Aerod., 99(5), 584-600. https://doi.org/10.1016/J.JWEIA.2011.02.007.
  27. Kim, W., Tamura, Y., Yoshida, A. and Yi, J.-H. (2017), "Interference effects of an adjacent tall building with various sizes on local wind forces acting on a tall building", Adv. Struct. Eng., 21(10), 1469-1481. https://doi.org/10.1177/1369433217750170.
  28. Kim, Y.C. and Kand, J. (2013), "Wind pressures on tapered and set-back tall buildings", J Fluids Struct., 39, 306-321. https://doi.org/10.1016/J.JFLUIDSTRUCTS.2013.02.008.
  29. Kim, Y.C. and Cao, S. (2023), "Application of probabilistic method to determination of aerodynamic force coefficients on tall buildings", Wind. Struct., 36(4), 249. https://doi.org/10.12989/WAS.2023.36.4.249.
  30. Kumar, D. and Dalui, S.K. (2017), "Effect of internal angles between limbs of cross plan shaped tall building under wind load", Wind. Struct., 24(2), 95-118. https://doi.org/10.12989/WAS.2017.24.2.095.
  31. Lo, Y.L., Li, Y.C. and Kim, Y.C. (2020), "Downstream interference effect of low-Scruton-number high-rise buildings under turbulent boundary layer flow", J. Wind Eng. Ind. Aerod., 198, 104101. https://doi.org/10.1016/J.JWEIA.2020.104101.
  32. Mallick, M., Kumar, A. and Patra, K.C. (2019), "Experimental Investigation on the Wind-Induced Pressures on C-Shaped Buildings", KSCE J. Civ. Eng., 23(8), 3535-3546. https://doi.org/10.1007/S12205-019-1929-6.
  33. Mallick, M., Kumar, A. and Patra, K.C. (2022), "Experimental and numerical analysis of mean pressure coefficient on C-shaped building with and without round corner", Hydrol. Modeling. Water Sci. Technol. Library, 109, 55-68. https://doi.org/10.1007/978-3-030-81358-1_6.
  34. Mallick, M., Mohanta, A. Kumar, A. and Raj, V. (2018), "Modelling of wind pressure coefficients on C-shaped building models", Model. Simul. Eng., 2018, 6524945. https://doi.org/10.1155/2018/6524945.
  35. Mandal, S., Dalui, S.K. and Bhattacharjya, S. (2021), "Wind induced response of corner modified 'U' plan shaped tall building", Wind. Struct., 32(6), 521-537. https://doi.org/10.12989/was.2021.32.6.521.
  36. Mukherjee, S., Chakraborty, S., Dalui, S. and Ahuja, A. (2014), "Wind induced pressure on "Y" plan shape tall building", Wind. Struct., 19, 523. https://doi.org/10.12989/was.2014.19.5.523.
  37. Nagar, S.K., Raj, R. and Dev, N. (2020), "Experimental study of wind-induced pressures on tall buildings of different shapes" Wind. Struct., 31(5), 431. https://doi.org/10.12989/WAS.2020.31.5.431.
  38. Navai, M. and Veitch, J. (2003), Acoustic Satisfaction in Open-Plan Offices: Review and Recommendations. https://doi.org/10.4224/20386513
  39. Pal, S., Meena, R.K., Raj, R. and Li, M. (2021), "Wind tunnel study of a fish-plan shape model under different isolated wind incidences", Wind. Struct., 33(5), 353. https://doi.org/10.12989/WAS.2021.33.5.353.
  40. Peng, H., Liu, Z. Liu, H. Lin, K. and Hu, G. (2021), "Experimental investigations of interference effects on wind pressures of tall buildings", Adv. Struct. Eng., 24(16), 3837-3852. https://doi.org/10.1177/13694332211042777.
  41. Patankar, S.V. and Spalding, D.B. (1972), "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows", Int. J. Heat Mass Transf., 15(10), 1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3.
  42. Paul, R. and Dalui, S.K. (2016), "Wind effects on 'Z' plan-shaped tall building: a case study", Int. J. Adv. Struct., 8(3), 319-335. https://doi.org/10.1007/S40091-016-0134-9/FIGURES/21.
  43. Sanyal, P. and Dalui, S. K. (2020), "Comparison of aerodynamic coefficients of various types of Y-plan-shaped tall buildings", Asian J. Civ. Eng, 21(7), 1109-1127. https://doi.org/10.1007/s42107-020-00265-9.
  44. Sanyal, P. and Dalui, S.K. (2021), "Effects of side ratio for 'Y' plan shaped tall building under wind load", Build Simul., 14(4), 1221-1236. https://doi.org/10.1007/s12273-020-0731-1.
  45. Sanyal, P. and Dalui, S.K. (2022), "Forecasting of aerodynamic coefficients of tri-axially symmetrical Y plan shaped tall building based on CFD data trained ANN", J. Build. Eng., 47, 103889. https://doi.org/10.1016/j.jobe.2021.103889.
  46. Shirzadeh Germi, M. and Eimani Kalehsar, H. (2021), "Numerical investigation of interference effects on the critical wind velocity of tall buildings", Structures, 30, 239-252. https://doi.org/10.1016/J.ISTRUC.2021.01.013.
  47. Sun, X., Wu, H. Wu, Y. and Su, N. (2021), "Wind-induced responses and control of a Kilometer skyscraper with mass and viscous dampers", J. Build. Eng., 43, 102552. https://doi.org/10.1016/J.JOBE.2021.102552.
  48. Tanaka, H., Tamura, Y. Ohtake, K. Nakai, M. and Kim, Y. C. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108, 179-191. https://doi.org/10.1016/J.JWEIA.2012.04.014.
  49. Tang, U.F. and Kwok, K.C.S. (2004), "Interference excitation mechanisms on a 3DOF aeroelastic CAARC building model", J. Wind Eng. Ind. Aerod., 92(14-15), 1299-1314. https://doi.org/10.1016/J.JWEIA.2004.08.004.
  50. Tominaga, Y., Mochida, A. Yoshie, R. Kataoka, H. Nozu, T. Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod. 96(10-11), 1749-1761. https://doi.org/10.1016/J.JWEIA.2008.02.058.
  51. Xing, F., Mohotti, D. and Chauhan, K. (2018), "Study on localised wind pressure development in gable roof buildings having different roof pitches with experiments, RANS and LES simulation models", Build Environ., 143, 240-257. https://doi.org/10.1016/J.BUILDENV.2018.07.026.
  52. Xing, Q. and Qian, J. (2018), "CFD Analysis of wind interference effects of three high-rise buildings. J. Asian Archit. Build. 17(3), 487-494. https://doi.org/10.3130/jaabe.17.487
  53. Zhao, J.G. and Lam, K.M. (2008), "Interference effects in a group of tall buildings closely arranged in an L- or T-shaped pattern", Wind. Struct., 11(1), 1. https://doi.org/10.12989/WAS.2008.11.1.001.
  54. Zu, G.B. and Lam. K.M. (2018), "Across-wind excitation mechanism for interference of twin tall buildings in tandem arrangement", Wind. Struct., 26(6), 397. https://doi.org/10.12989/WAS.2018.26.6.397.