DOI QR코드

DOI QR Code

Investigation on the integrated transfer function characteristics for the buffeting response prediction of elongated structures

  • Yi Su (Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing University) ;
  • Mingshui Li (Research Centre for Wind Engineering, Southwest Jiaotong University) ;
  • Jin Di (Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing University) ;
  • Yang Yang (Research Centre for Wind Engineering, Southwest Jiaotong University) ;
  • Shaopeng Li (Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing University)
  • Received : 2023.03.03
  • Accepted : 2023.11.21
  • Published : 2023.12.25

Abstract

Previous studies have shown that the integrated transfer function (ITF) is independent of turbulence characteristics and can be effectively applied to predict the buffeting response of elongated structures, assuming that the strip hypothesis is valid. However, existing research has not effectively identified the ITF through segment model vibration tests, and the influence of the 3D effect on the accuracy of the strip hypothesis and the characteristics of the ITF in wind tunnel tests has not been quantitatively studied. A segment model vibration measurement device that can change a test model's span-width ratio was designed in this study. An airfoil section and a streamlined box girder section structure were taken as the background, and their ITFs were effectively identified under different L/B (L denotes the turbulent integral scale and B denotes the structural width) and model span-width ratios. The influence laws of the 3D effect on the accuracy of the strip hypothesis and ITF identification in wind tunnel tests were systematically investigated. The results showed that L/B and the structural span-width ratio are two significant controlling factors that affect the accuracy of the strip hypothesis and ITF identification. The research provides an effective experimental method for accurately predicting the buffeting response of elongated structures based on ITFs identified through segment model vibration tests.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (No. 52208462), the China Postdoctoral Science Foundation (No. 2022M720578), the Natural Science Foundation of Chongqing Municipality under grant (No. 2023NSCQ-MSX2597), the National Natural Science Foundation of China (No. 52008357).

References

  1. Azzi, Z., Elawady, A., Irwin, P., Chowdhury, A.G. and Shdid, C.A. (2022), "Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system", Wind Struct., 34(2), 231-257. https://doi.org/10.12989/was.2022.34.2.231.
  2. Chen, X., Matsumoto, M. and Kareem, A. (2000), "Aerodynamic coupling effects on flutter and buffeting of bridges", J. Eng. Mech., 126(1), 17-26. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(17).
  3. Chen, Z. (2005), Bridge Wind Engineering, China Communications Press, Beijing, China.
  4. Davenport, A.G. (1962a), "The response of slender line-like structures to a gusty wind", ICE Proc., 23(3), 389-408. https://doi.org/10.1680/iicep.1962.10876.
  5. Davenport, A.G. (1962b), "Buffeting of a suspension bridge by storm winds", J. Struct. Div., 88(3), 233-270. https://doi.org/10.1061/jsdeag.0000773.
  6. de Miranda, S., Patruno, L., Ubertini, F. and Vairo, G. (2014), "On the identification of flutter derivatives of bridge decks via RANS turbulence models: Benchmarking on rectangular prisms", Eng. Struct., 76(1), 359-370. https://doi.org/10.1016/j.engstruct.2014.07.027.
  7. Farell, C. and Iyengar, A.K.S. (1999), "Experiments on the wind tunnel simulation of atmospheric boundary layers", J. Wind Eng. Ind. Aerod., 79(1-2), 11-35. https://doi.org/10.1016/S0167-6105(98)00117-2.
  8. Haan, F.L. (2000), "The effects of turbulence on the aerodynamics of long-span bridges", Ph.D. Dissertation, University of Notre Dame, Indiana.
  9. Halfman, R.L. (1952), "Experimental aerodynamic derivatives of a sinusoidally oscillating airfoil in two-dimensional flow", Tech. Rep., 1108, NACA.
  10. Hu, P., Han, Y., Cai, C.S. and Cheng, W. (2021), "Wind characteristics and flutter performance of a long-span suspension bridge located in a deep-cutting gorge", Eng. Struct., 233, 111841. https://doi.org/10.1016/j.engstruct.2020.111841.
  11. Jain, A., Jones, N.P. and Scanlan, R.H. (1996a), "Coupled aeroelastic and aerodynamic response analysis of long-span bridges", J. Wind Eng. Ind. Aerod., 60, 69-80. https://doi.org/10.1016/0167-6105(96)00024-4.
  12. Jain, A., Jones, N.P. and Scanlan, R.H. (1996b), "Coupled flutter and buffeting analysis of long-span bridges", J. Struct. Eng., 122(7), 716-725. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:7(716).
  13. Jakobsen, J.B. (1997), "Span-wise structure of lift and overturning moment on a motionless bridge girder", J. Wind Eng. Ind. Aerod., 69, 795-805. https://doi.org/10.1016/S0167-6105(97)00206-7.
  14. Jiang, Y., Hui, Y., Wang, Y., Peng, L., Huang, G. and Liu, S. (2023), "A novel eigenvalue-based iterative simulation method for multi-dimensional homogeneous non-Gaussian stochastic vector fields", Struct. Saf., 100, 102290. https://doi.org/10.1016/j.strusafe.2022.102290.
  15. Kimura, K., Fujino, Y., Nakato, S. and Tamura, H. (1997), "Characteristics of buffeting forces on flat cylinders", J. Wind Eng. Ind. Aerod., 69, 365-374. https://doi.org/10.1016/S0167-6105(97)00169-4.
  16. Larose, G.L. (1999), "Experimental determination of the aerodynamic admittance of a bridge deck segment", J. Fluids Struct., 13, 1029-1040. https://doi.org/10.1006/jfls.1999.0244.
  17. Larose, G.L. (2003), "The spatial distribution of unsteady loading due to gusts on bridge decks", J. Wind Eng. Ind. Aerod., 91(12-15), 1431-1443. https://doi.org/10.1016/j.jweia.2003.09.008.
  18. Larose, G.L. and Mann, J. (1998), "Gust loading on streamlined bridge decks", J. Fluids Struct., 12, 511-536. https://doi.org/10.1006/jfls.1998.0161.
  19. Li, C., Chen, Z. and Zhang, Z. (2013), "Effect of turbulence on the aerodynamic stability of long span bridges", Adv. Mater. Res., 639-640(1), 452-455. https://doi.org/10.4028/www.scientific.net/AMR.639-640.452.
  20. Li, J., Wang, J., Yang, S., Wang, F. and Zhao, G. (2022), "Wind tunnel investigation on wind characteristics of flat and mountainous terrain", Wind Struct., 35(4), 229-242. https://doi.org/10.12989/was.2022.35.4.229.
  21. Li, M. (2019), "Buffeting Response Analysis of Long-span Bridges with Emphasis on the Three-dimensional Effects of Turbulence and the Study on the Equivalent Static Wind Loads", Ph.D. Dissertation, Southwest Jiaotong University, Chengdu. (In Chinese). https://doi.org/10.27414/d.cnki.gxnju.2019.001915.
  22. Li, M., Li, M. and Sun, Y. (2020), "Effects of turbulence integral scale on the buffeting response of a long-span suspension bridge", J. Sound Vib., 490, 115721. https://doi.org/10.1016/j.jsv.2020.115721.
  23. Li, M., Yang, Y., Li, M. and Liao H. (2018), "Direct measurement of the Sears function in turbulent flow", J. Fluid Mech., 847, 768-785. https://doi.org/10.1017/jfm.2018.351.
  24. Li, S., Li, M. and Larose, G.L. (2018b), "Aerodynamic admittance of streamlined bridge decks", J. Fluids Struct., 78, 1-23. https://doi.org/10.1016/j.jfluidstructs.2017.12.014.
  25. Li, S., Li, M., Wu, B., Li, K. and Yang, Y. (2023), "Three-dimensional aerodynamic lift on a rectangular cylinder in turbulent flow at an angle of attack", J. Fluid. Struct., 118, 103859. https://doi.org/10.1016/j.jfluidstructs.2023.103859.
  26. Li, S., Liu, Y. Li, M., Zeng, W., Gu, S. and Gao, Y. (2022), "The effect of turbulence intensity on the unsteady gust loading on a 5:1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 225, 104994. https://doi.org/10.1016/j.jweia.2022.104994.
  27. Ma, C. (2007), "3D Aerodynamic Admittance Research of Streamlined Box Bridge Decks", Ph.D. Dissertation, Southwest Jiaotong University, Chengdu. (In Chinese).
  28. Ma, R., Yang, Y., Li, M. and Li, Q.S. (2021), "The unsteady lift of an oscillating airfoil encountering a sinusoidal streamwise gust", J. Fluid Mech., 908, A22. https://doi.org/10.1017/jfm.2020.873.
  29. Mannini, C., Sbragi, G. and Schewe, G. (2016), "Analysis of self-excited forces for a box-girder bridge deck through unsteady RANS simulations", J. Fluids Struct., 63, 57-76. https://doi.org/10.1016/j.jfluidstructs.2016.02.007.
  30. Massaro, M. and Graham, J.M.R. (2015), "The effect of three-dimensionality on the aerodynamic admittance of thin sections in free stream turbulence", J. Fluids Struct., 57, 81-89. https://doi.org/10.1016/j.jfluidstructs.2015.05.012.
  31. Minh, N.N., Miyata, T., Yamada, H. and Sanada, Y. (1999), "Numerical simulation of wind turbulence and buffeting analysis of long-span bridges", J. Wind Eng. Ind. Aerod., 83, 301-315. https://doi.org/10.1016/S0167-6105(99)00080-X.
  32. O iseth, O., Petersen, O .W., Papinutti, M., Cetina, M. and Brank, B. (2020), "Nonparametric modeling of self-excited forces based on relations between flutter derivatives", Wind Struct., 31(6), 561-573. https://doi.org/10.12989/was.2020.31.6.561.
  33. Rainey, A.G. (1957), "Measurement of aerodynamic forces for various mean angles of attach on an airfoil oscillating in pitch and on two finite-span wings oscillating in bending with emphasis on damping in the stall", Tech. Rep., 3643, NACA. http://hdl.handle.net/2060/19930091024.
  34. Reid, E.G. and Vincenti, W. (1940), "An experimental determination of the lift of an oscillating airfoil", J. Aerosol Sci., 8(1), 1-6. https://doi.org/10.2514/8.10460.
  35. Scanlan, R.H. (1978a), "The action of flexible bridges under wind, I: Flutter theory †", J. Sound Vib., 60(2), 187-199. https://doi.org/10.1016/S0022-460X(78)80028-5.
  36. Scanlan, R.H. (1978b), "The action of flexible bridges under wind, II: Buffeting theory", J. Sound Vib., 60(2), 201-211. https://doi.org/10.1016/S0022-460X(78)80029-7.
  37. Sears, R.W. (1941), "Some aspects of non-stationary airfoil theory and its practical applications", J. Aeronaut. Sci., 8(3), 104-108. https://doi.org/10.2514/8.10655.
  38. Shum, K.M., Xu, Y. and Guo W. (2006), "Buffeting response control of a long span cable-stayed bridge during construction using semi-active tuned liquid column dampers", Wind Struct., 9(4), 271-296. https://doi.org/10.12989/was.2006.9.4.271.
  39. Siedziako, B. and Oiseth, O. (2018), "Modeling of self-excited forces during multimode flutter: An experimental study", Wind Struct., 27(5), 293-309. https://doi.org/10.12989/was.2018.27.5.293.
  40. Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures: Fundamentals and Applications to Design, (3rd Edition), John Wiley & Sons, New York, NY, USA. https://doi.org/10.5860/choice.34-3889.
  41. Su, Y. and Li, M. (2019), "Integrated transfer function for buffeting response evaluation of long-span bridges", J. Wind Eng. Ind. Aerod., 189, 231-242. https://doi.org/10.1016/j.jweia.2019.03.025.
  42. Su, Y., Li, M., Yang, Y., Di, J., Yang, X. and Zhao, N. (2023), "Prediction method for bridge buffeting responses based on the integrated transfer function identified via segmental model vibration test", J. Wind Eng. Ind. Aerod., 242, 105578. https://doi.org/10.1016/j.jweia.2023.105578.
  43. Theodorson, T. (1935), "General theory of aerodynamic instability and the mechanism of flutter", Tech. Rep., 496, NACA. http://hdl.handle.net/2060/19930090935.
  44. Wang, Q., Wu, B., Liao, H. and Mei, H. (2022), "Experimental investigation of amplitude-dependent self-excited aerodynamic forces on a 5:1 rectangular cylinder", Wind Struct., 34(1), 73-80. https://doi.org/10.12989/was.2022.34.1.073.
  45. Xin, J., Zhou, C., Jiang, Y., Tang, Q., Yang, X. and Zhou, J. (2023), "A signal recovery method for bridge monitoring system using TVFEMD and encoder-decoder aided LSTM", Measurement, 214, 112797. https://doi.org/10.1016/j.measurement.2023.112797.
  46. Yan, L., Zhu, L., He, X. and Flay, R.G.J. (2019), "Experimental determination of aerodynamic admittance functions of a bridge deck considering oscillation effect", J. Wind Eng. Ind. Aerod., 190, 83-97. https://doi.org/10.1016/j.jweia.2019.04.009.
  47. Yang, X., Zhou, Q., Lei, Y., Yang, Y. and Li, M. (2022), "Non-Gaussian features of dynamic wind loads on a long-span roof in boundary layer turbulences with different integral-scales", Wind Struct., 34(5), 421-435. https://doi.org/10.12989/was.2022.34.5.421.
  48. Yang, Y. (2019), "Aerodynamic Admittances of Airfoil and Rectangular Cylinder", Ph.D. Dissertation, Southwest Jiaotong University, Chengdu. (In Chinese). https://doi.org/10.27414/d.cnki.gxnju.2019.001604.
  49. Yang, Y., Li, M. and Liao, H. (2019), "Three-dimensional effects on the transfer function of a rectangular-section body in turbulent flow", J. Fluid Mech., 872, 348-366. https://doi.org/10.1017/jfm.2019.402.
  50. Yang, Y., Li, M., Kim, H.K. and Li, M. (2020), "Measurements of fluctuating lift forces on rectangular cylinders in turbulent flow", Phys. Fluids, 32, 015109. https://doi.org/10.1063/1.5125657.