DOI QR코드

DOI QR Code

Numerical investigations of reinforcement concrete beams with different types of FRP bars

  • Azza M. Al-Ashmawy (Structural Engineering Department, Faculty of Engineering, Zagazig University) ;
  • Osman Shallan (Structural Engineering Department, Faculty of Engineering, Zagazig University) ;
  • Tharwat A. Sakr (Structural Engineering Department, Faculty of Engineering, Zagazig University) ;
  • Hanaa E. Abd-EL-Mottaleb (Structural Engineering Department, Faculty of Engineering, Zagazig University)
  • Received : 2021.03.24
  • Accepted : 2023.11.03
  • Published : 2023.12.25

Abstract

The present study is focused on instigation of the nonlinear mechanical behavior of reinforced concrete beams considering different types of FRP bars through nonlinear finite element simulations. To explore the impact of the FRP reinforcement type and geometry on the nonlinear mechanical behavior of reinforced beam, intensive parametric studies are carried out and discussed. Twenty models were carried out based on the finite element software (ABAQUS). The concrete damage plasticity model was considered. Four types of fiber polymer bars, CFRP, GFRP, AFRP and BFRP as longitudinal reinforcement for concrete beam were used. The validation of numerical results was confirmed by experimental as well as numerical results, then the parametric study was conducted to evaluate the effect of change in different parameters, such as bar diameter size, type of FRP bars and shear span length. All results were analyzed and discussed through, load-deflection diagram. The results showed that the use of FRP bars in rebar concrete beam improves the beam stiffness and enhance the ultimate load capacity. The load capacity enhanced in the range of (20.44-244.47%) when using different types of FRP bars. The load-carrying capacity of beams reinforced with CFRP is the highest one, beams reinforced with AFRP is higher than that reinforced with BFRP but beams reinforced with GFRP recorded the lowest load of capacity compered with other beams reinforced with FRP Bars.

Keywords

References

  1. ABAQUS User's Manual Version 6.12, Hibbitt, Karlsson and Sorensen Inc., Pawtucket, RI.
  2. Abbaszadeh, H., Ahani, A. and Emami Azadi, M.R. (2018), "Debonding and fracture behavior of concrete specimens retrofitted by FRP composite", Comput. Eng. Phys. Model., 1(2), 27-40. https://doi.org/10.22115/cepm.2018.125309.1015.
  3. Abdel Rahman, A.A., El-Shafei, A.G. and Mahmoud, F.F. (2014), "Nonlinear analysis of viscoelastically layered rolls in steady state rolling contact", Int. J. Appl. Mech., 6(06), 1450065. https://doi.org/10.1142/S1758825114500653.
  4. Abdelrahman, A.A., Ashry, M., Alshorbagy, A.E. and Abdallah, W.S. (2021), "On the mechanical behavior of two directional symmetrical functionally graded beams under moving load", Int. J. Mech. Mater. Des., 17, 563-586. https://doi.org/10.1007/s10999-021-09547-9.
  5. Abdelrahman, A.A., El-Shafei, A.G. and Mahmoud, F.F. (2019), "Analysis of steady-state frictional rolling contact problems in Schapery-nonlinear viscoelasticity", Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 233(6), 911-926. https://doi.org/10.1177/1350650118806675.
  6. Alabdulhady, M.Y., Ojaimi, M.F. and Chkheiwer, A.H. (2022), "The efficiency of CFRP strengthening and repair system on the flexural behavior of RC beams constructed with different concrete compressive strength", Result. Eng., 16, 100763. https://doi.org/10.1016/j.rineng.2022.100763.
  7. Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-El-Mottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams", Struct. Eng. Mech., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023.
  8. Al-Saidy, A.H., Al-Harthy, A.S., Al-Jabri, K.S., Abdul-Halim, M. and Al-Shidi, N.M. (2010), "Structural performance of corroded RC beams repaired with CFRP sheets", Compos. Struct., 92(8), 1931-1938. https://doi.org/10.1016/j.compstruct.2010.01.001.
  9. Attari, N., Amziane, S. and Chemrouk, M. (2012), "Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets", Constr. Build. Mater., 37, 746-757. https://doi.org/10.1016/j.conbuildmat.2012.07.052.
  10. Azimi, A. and Farahnaki, R. (2018), "Flexural capacity prediction for reinforced concrete beams by group method of data handling approach", Comput. Eng. Phys. Model., 1(3), 100-110. https://doi.org/10.22115/CEPM.2018.136502.1033.
  11. Bakay, R., Sayed-Ahmed, E.Y. and Shrive, N.G. (2009), "Interfacial debonding failure for reinforced concrete beams strengthened with carbon-fibre-reinforced polymer strips", Can. J. Civil Eng., 36(1), 103-121. https://doi.org/10.1139/L08-096.
  12. Balsamo, A., Nardone, F., Iovinella, I., Ceroni, F. and Pecce, M. (2013), "Flexural strengthening of concrete beams with EBFRP, SRP and SRCM: Experimental investigation", Compos. B. Eng., 46, 91-101. https://doi.org/10.1016/j.compositesb.2012.10.014.
  13. Bangash, M.Y. (1989), Concrete and Concrete Structures: Numerical Modelling and Applications, Elsevier Science Publishers Ltd., London, England.
  14. Chalioris, C.E. (2007), "Analytical model for the torsional behaviour of reinforced concrete beams retrofitted with FRP materials", Eng. Struct., 29(12), 3263-3276. https://doi.org/10.1016/j.engstruct.2007.09.009.
  15. Chen, J.F., Yuan, H. and Teng, J.G. (2007), "Debonding failure along a softening FRP-to-concrete interface between two adjacent cracks in concrete members", Eng. Struct., 29(2), 259-270. https://doi.org/10.1016/j.engstruct.2006.04.017.
  16. Chen, W., Pham, T.M., Sichembe, H., Chen, L. and Hao, H. (2018), "Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet", Compos. B. Eng., 134, 114-126. https://doi.org/10.1016/j.compositesb.2017.09.053.
  17. Colotti, V. and Spadea, G. (2001), "Shear strength of RC beams strengthened with bonded steel or FRP plates", J. Struct. Eng., 127(4), 367-373. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:4(367).
  18. Deng, J. and Lee, M.M. (2007), "Fatigue performance of metallic beam strengthened with a bonded CFRP plate", Compos. Struct., 78(2), 222-231. https://doi.org/10.1016/j.compstruct.2005.09.003.
  19. Diagana, C., Li, A., Gedalia, B. and Delmas, Y. (2003), "Shear strengthening effectiveness with CFF strips", Eng. Struct., 25(4), 507-516. https://doi.org/10.1016/S0141-0296(02)00208-0.
  20. Djeddi, F., Ghernouti, Y., Abdelaziz, Y. and Alex, L. (2016), "Strengthening in flexure-shear of RC beams with hybrid FRP systems: Experiments and numerical modeling", J. Reinf. Plast. Compos., 35(22), 1642-1660. https://doi.org/10.1177/0731684416662532.
  21. Dong, J.F., Wang, Q.Y. and Guan, Z.W. (2012), "Structural behaviour of RC beams externally strengthened with FRP sheets under fatigue and monotonic loading", Eng. Struct., 41, 24-33. https://doi.org/10.1016/j.engstruct.2012.03.024.
  22. Elbana, A. and Junaid, M.T. (2020), "Determination of flexural capacity for GFRP-reinforced concrete beams retrofitted using external CFRP sheet", Struct., 27, 1384-1395. https://doi.org/10.1016/j.istruc.2020.07.003.
  23. El-Sayed, A.K. (2014), "Effect of longitudinal CFRP strengthening on the shear resistance of reinforced concrete beams", Compos. B. Eng., 58, 422-429. https://doi.org/10.1016/j.compositesb.2013.10.061.
  24. Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357.
  25. Eltaher, M.A., Attia, M.A., Soliman, A.E. and Alshorbagy, A.E. (2018), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097.
  26. Esfahani, M.R., Kianoush, M.R. and Tajari, A.R. (2007), "Flexural behaviour of reinforced concrete beams strengthened by CFRP sheets", Eng. Struct., 29(10), 2428-2444. https://doi.org/10.1016/j.engstruct.2006.12.008
  27. Ferrier, E., Bigaud, D., Clement, J.C. and Hamelin, P. (2011), "Fatigue-loading effect on RC beams strengthened with externally bonded FRP", Constr. Build. Mater., 25(2), 539-546. https://doi.org/10.1016/j.conbuildmat.2010.07.035.
  28. Hashemi, S.H., Maghsoudi, A.A. and Rahgozar, R. (2008), "Flexural ductility of reinforced HSC beams strengthened with CFRP sheets", Struct. Eng. Mech., 30(4), 403-426. https://doi.org/10.12989/sem.2008.30.4.403.
  29. Hassan, H.F., Medhlom, M.T.K., Ahmed, A.S. and Al-Dahlaki, M.H. (2020), "Flexural performance of concrete beams reinforced by GFRP bars and strengthened by CFRP sheets", Case Stud. Constr. Mater., 13, e00417. https://doi.org/10.1016/j.cscm.2020.e00417.
  30. Helal, K., Yehia, S., Hawileh, R. and Abdalla, J. (2020), "Performance of preloaded CFRP-strengthened fiber reinforced concrete beams", Compos. Struct., 244, 112262. https://doi.org/10.1016/j.compstruct.2020.
  31. ISIS Educational Module 2: An Introduction to FRP Composites for Construction Prepared by ISIS Canada A Canadian Network of Centers of Excellence.
  32. Kachlakev, D.I., Miller, T.H., Potisuk, T., Yim, S.C. and Chansawat, K. (2001), "Finite element modeling of reinforced concrete structures strengthened with FRP laminates", No. FHWA-OR-RD-01-XX, Dept. of Transportation, Research Group, Oregon.
  33. Khalifa, A. and Nanni, A. (2000), "Improving shear capacity of existing RC T-section beams using CFRP composites", Cement Concrete Compos., 22(3), 165-174. https://doi.org/10.1016/S0958-9465(99)00051-7.
  34. Kotynia, R., Abdel Baky, H., Neale, K.W. and Ebead, U.A. (2008), "Flexural strengthening of RC beams with externally bonded CFRP systems: Test results and 3D nonlinear FE analysis", J. Compos. Constr., 12(2), 190-201. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:2(190).
  35. Li, A., Diagana, C. and Delmas, Y. (2001), "CRFP contribution to shear capacity of strengthened RC beams", Eng. Struct., 23(10), 1212-1220. https://doi.org/10.1016/S0141-0296(01)00035-9.
  36. Mahmoud, F.F., El-Shafei, A.G., Abdelrahman, A.A. and Attia, M.A. (2013), "Modeling of nonlinear viscoelastic contact problems with large deformations", Appl. Math. Model., 37(10-11), 6730-6745. https://doi.org/10.1016/j.apm.2013.02.017.
  37. Malek, A.M. and Saasatmanesh, H. (1998), "Ultimate shear capacity of reinforced concrete beams strengthened with web-bonded fiber-reinforced plastic plates", Struct. J., 95(4), 391-399. https://doi.org/10.14359/555.
  38. Malek, A.M., Saadatmanesh, H. and Ehsani, M.R. (1998), "Prediction of failure load of R/C beams strengthened with FRP plate due to stress concentration at the plate end", Struct. J., 95(2), 142-152. https://doi.org/10.14359/534.
  39. Mirrashid, M. and Naderpour, H. (2021), "Recent trends in prediction of concrete elements behavior using soft computing (2010-2020)", Arch. Comput. Meth. Eng., 28, 3307-3327. https://doi.org/10.1007/s11831-020-09500-7.
  40. Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S. and Abdelrahman, A.A. (2023), "On vibrations of functionally graded double wishbone structural systems", Wave. Random Complex Media, 1-28. https://doi.org/10.1080/17455030.2023.2226224
  41. Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S. and Abdelrahman, A.A. (2022), "Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements methods", Steel Compos. Struct., 45(5), 697-713. https://doi.org/10.12989/scs.2022.45.5.697.
  42. Naderpour, H. and Mirrashid, M. (2019), "A Neuro-Fuzzy model for punching shear prediction of slab-column connections reinforced with FRP", J. Soft Comput. Civil Eng., 3(1), 16-26. https://doi.org/10.22115/scce.2018.136068.1073.
  43. Naderpour, H. and Mirrashid, M. (2020), "Confinement coefficient predictive modeling of FRP-confined RC columns", Adv. Civil Eng. Mater., 9(1), 1-21. https://doi.org/10.1520/ACEM20190145.
  44. Nayak, A.N., Kumari, A. and Swain, R.B. (2018), "Strengthening of RC beams using externally bonded fibre reinforced polymer composites", Struct., 14, 137-152. https://doi.org/10.1016/j.istruc.2018.03.004.
  45. Qin, R., Zhou, A. and Lau, D. (2017), "Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams", Compos. B. Eng., 108, 200-209. https://doi.org/10.1016/j.compositesb.2016.09.054.
  46. Sabzi, J., Esfahani, M.R., Ozbakkaloglu, T. and Farahi, B. (2020), "Effect of concrete strength and longitudinal reinforcement arrangement on the performance of reinforced concrete beams strengthened using EBR and EBROG methods", Eng. Struct., 205, 110072. https://doi.org/10.1016/j.engstruct.2019.110072.
  47. Sas, G., Taljsten, B., Barros, J., Lima, J. and Carolin, A. (2009), "Are available models reliable for predicting the FRP contribution to the shear resistance of RC beams?", J. Compos. Constr., 13(6), 514-534. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000045.
  48. Sause, R., Harries, K.A., Walkup, S.L., Pessiki, S. and Ricles, J.M. (2004), "Flexural behavior of concrete columns retrofitted with carbon fiber-reinforced polymer jackets", Struct. J., 101(5), 708-716. https://doi.org/10.14359/13393.
  49. Sayed-Ahmed, E.Y., Bakay, R. and Shrive, N.G. (2009), "Bond strength of FRP laminates to concrete: state-of-the-art review", Electron. J. Struct. Eng., 9, 45. https://doi.org/10.56748/ejse.9117.
  50. Shah, S.P., Swartz, S.E. and Ouyang, C. (1995), Fracture Mechanics of Concrete, John Willy & Sons Inc., New York, NY, USA.
  51. Shannag, M.J., Al-Akhras, N.M. and Mahdawi, S.F. (2014), "Flexure strengthening of lightweight reinforced concrete beams using carbon fibre-reinforced polymers", Struct. Infrastr. Eng., 10(5), 604-613. https://doi.org/10.1080/15732479.2012.757790.
  52. Sharaky, I.A., Baena, M., Barris, C., Sallam, H.E.M. and Torres, L. (2018), "Effect of axial stiffness of NSM FRP reinforcement and concrete cover confinement on flexural behaviour of strengthened RC beams: Experimental and numerical study", Eng. Struct., 173, 987-1001. https://doi.org/10.1016/j.engstruct.2018.07.062.
  53. Soliman, A.E., Eltaher, M.A., Attia, M.A. and Alshorbagy, A.E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., 66(1), 85-96. https://doi.org/10.12989/sem.2018.66.1.085.
  54. Sundar, N., Raghunath, P.N. and Dhinakaran, G. (2016), "Flexural behavior of RC beams with hybrid FRP strengthening", Int. J. Civil Eng., 7(6), 427-433.
  55. Teng, J.G., Lam, L. and Chen, J.F. (2004), "Shear strengthening of RC beams with FRP composites", Prog. Struct. Eng. Mater., 6(3), 173-184. https://doi.org/10.1002/pse.179.
  56. Toutanji, H., Zhao, L. and Zhang, Y. (2006), "Flexural behavior of reinforced concrete beams externally strengthened with CFRP sheets bonded with an inorganic matrix", Eng. Struct., 28(4), 557-566. https://doi.org/10.1016/j.engstruct.2005.09.011.
  57. Triantafillou, T.C. (1998), "Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites", ACI Struct. J., 95, 107-115.
  58. Triantafyllou, G.G., Rousakis, T.C. and Karabinis, A.I. (2017), "Corroded RC beams patch repaired and strengthened in flexure with fiber-reinforced polymer laminates", Compos. B. Eng., 112, 125-136. https://doi.org/10.1016/j.compositesb.2016.12.032.
  59. Wagih, A., Attia, M.A., Abdelrahman, A.A., Bendine, K. and Sebaey, T.A. (2019), "On the indentation of elastoplastic functionally graded materials", Mech. Mater., 129, 169-188. https://doi.org/10.1016/j.mechmat.2018.11.012.
  60. Wang, Q.Y. and Pidaparti, R.M. (2002), "Static characteristics and fatigue behavior of composite-repaired aluminum plates", Compos. Struct., 56(2), 151-155. https://doi.org/10.1016/S0263-8223(01)00176-3.
  61. Wang, W., Dai, H. and Wu, S. (2008), "Mechanical behavior and electrical property of CFRC-strengthened RC beams under fatigue and monotonic loading", Mater. Sci. Eng. A, 479(1-2), 191-196. https://doi.org/10.1016/j.msea.2007.06.046.
  62. Wang, Y.C. and Hsu, K. (2008), "Strengthening of reinforced concrete beams constructed with substandard steel reinforcement termination", Compos. Struct., 85(1), 10-19. https://doi.org/10.1016/j.compstruct.2007.10.019.
  63. Yoon, K.M.L. (2000), "Strengthening of concrete beams with fibre reinforced polymer (FRP) mesh", Undergraduate Thesis, Department of Civil Engineering, National University of Singapore, Singapore.
  64. Youssef, M.A. (2006), "Analytical prediction of the linear and nonlinear behaviour of steel beams rehabilitated using FRP sheets", Eng. Struct., 28(6), 903-911. https://doi.org/10.1016/j.engstruct.2005.10.018.
  65. Zhao, G. and Li, A. (2008), "Numerical study of a bonded steel and concrete composite beam", Comput. Struct., 86(19-20), 1830-1838. https://doi.org/10.1016/j.compstruc.2008.04.002.